These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


84 related items for PubMed ID: 21562150

  • 21. Comments on Point:Counterpoint series "Lactic acid accumulation is an advantage/disadvantage during muscle activity".
    Messonnier L, Denis C, Féasson L, Lacour JR.
    J Appl Physiol (1985); 2006 Oct; 101(4):1269. PubMed ID: 17019758
    [No Abstract] [Full Text] [Related]

  • 22. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis.
    Krustrup P, Ferguson RA, Kjaer M, Bangsbo J.
    J Physiol; 2003 May 15; 549(Pt 1):255-69. PubMed ID: 12651917
    [Abstract] [Full Text] [Related]

  • 23. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle.
    Parra J, Cadefau JA, Rodas G, Amigó N, Cussó R.
    Acta Physiol Scand; 2000 Jun 15; 169(2):157-65. PubMed ID: 10848646
    [Abstract] [Full Text] [Related]

  • 24. Point:Counterpoint authors respond to commentaries on "Lactic acid accumulation is an advantage/disadvantage during muscle activity".
    Nielsen OB, Overgaard K.
    J Appl Physiol (1985); 2006 Jul 15; 101(1):367; author reply 369-70. PubMed ID: 16782838
    [No Abstract] [Full Text] [Related]

  • 25. Physiology. Lactic acid--the latest performance-enhancing drug.
    Allen D, Westerblad H.
    Science; 2004 Aug 20; 305(5687):1112-3. PubMed ID: 15326341
    [No Abstract] [Full Text] [Related]

  • 26. VO2max and lactate production are not normal in all patients with chronic fatigue.
    Jones NL, Heigenhauser GJ.
    Med Sci Sports Exerc; 2002 Jul 20; 34(7):1215; author reply 1215-6. PubMed ID: 12131266
    [No Abstract] [Full Text] [Related]

  • 27. Using scatterplots to teach the critical power concept.
    Pettitt RW.
    Adv Physiol Educ; 2012 Jun 20; 36(2):172-5. PubMed ID: 22665435
    [No Abstract] [Full Text] [Related]

  • 28. Lactate and force production in skeletal muscle.
    Kristensen M, Albertsen J, Rentsch M, Juel C.
    J Physiol; 2005 Jan 15; 562(Pt 2):521-6. PubMed ID: 15550457
    [Abstract] [Full Text] [Related]

  • 29. [Use of simple mathematical models in sports medicine performance diagnosis].
    Pessenhofer H, Sauseng N, Schwaberger G.
    Biomed Tech (Berl); 1990 Jan 15; 35 Suppl 2():195-6. PubMed ID: 2223988
    [No Abstract] [Full Text] [Related]

  • 30. Metabolic influences of fiber size in aerobic and anaerobic locomotor muscles of the blue crab, Callinectes sapidus.
    Johnson LK, Dillaman RM, Gay DM, Blum JE, Kinsey ST.
    J Exp Biol; 2004 Nov 15; 207(Pt 23):4045-56. PubMed ID: 15498950
    [Abstract] [Full Text] [Related]

  • 31. Global changes in anaerobic fitness test performance of children and adolescents (1958-2003).
    Tomkinson GR.
    Scand J Med Sci Sports; 2007 Oct 15; 17(5):497-507. PubMed ID: 17181769
    [Abstract] [Full Text] [Related]

  • 32. Point: lactic acid accumulation is an advantage during muscle activity.
    Lamb GD, Stephenson DG.
    J Appl Physiol (1985); 2006 Apr 15; 100(4):1410-2; discussion 1414. PubMed ID: 16540714
    [No Abstract] [Full Text] [Related]

  • 33. Interaction between aerobic and anaerobic metabolism during intense muscle contraction.
    Greenhaff PL, Timmons JA.
    Exerc Sport Sci Rev; 1998 Apr 15; 26():1-30. PubMed ID: 9696983
    [No Abstract] [Full Text] [Related]

  • 34. Neuromuscular fatigue and recovery dynamics following prolonged continuous run at anaerobic threshold.
    Skof B, Strojnik V.
    Br J Sports Med; 2006 Mar 15; 40(3):219-22; discussion 219-22. PubMed ID: 16505077
    [Abstract] [Full Text] [Related]

  • 35. Noninvasive determination of exercise-induced hydrodgen ion threshold through direct optical measurement.
    Soller BR, Yang Y, Lee SM, Wilson C, Hagan RD.
    J Appl Physiol (1985); 2008 Mar 15; 104(3):837-44. PubMed ID: 18096753
    [Abstract] [Full Text] [Related]

  • 36. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling.
    Racinais S, Bishop D, Denis R, Lattier G, Mendez-Villaneuva A, Perrey S.
    Med Sci Sports Exerc; 2007 Feb 15; 39(2):268-74. PubMed ID: 17277590
    [Abstract] [Full Text] [Related]

  • 37. Neuro-muscular fatigue and recovery dynamics following anaerobic interval workload.
    Skof B, Strojnik V.
    Int J Sports Med; 2006 Mar 15; 27(3):220-5. PubMed ID: 16541378
    [Abstract] [Full Text] [Related]

  • 38. The role of carbonic anhydrase in the recovery of skeletal muscle from anoxia.
    Wroblewski K, Spalthoff S, Zimmerman UJ, Post RL, Sanger JW, Forster RE.
    J Appl Physiol (1985); 2005 Aug 15; 99(2):488-98. PubMed ID: 15802363
    [Abstract] [Full Text] [Related]

  • 39. Muscle cell volume and pH changes due to glycolytic ATP synthesis.
    Kemp G.
    J Physiol; 2007 Jul 01; 582(Pt 1):461-5; author reply 467-70. PubMed ID: 17446216
    [No Abstract] [Full Text] [Related]

  • 40. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans.
    Crisafulli A, Tangianu F, Tocco F, Concu A, Mameli O, Mulliri G, Caria MA.
    J Appl Physiol (1985); 2011 Aug 01; 111(2):530-6. PubMed ID: 21617078
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.