These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Vlaming ML, Pala Z, van Esch A, Wagenaar E, de Waart DR, van de Wetering K, van der Kruijssen CM, Oude Elferink RP, van Tellingen O, Schinkel AH. Clin Cancer Res; 2009 May 01; 15(9):3084-93. PubMed ID: 19383815 [Abstract] [Full Text] [Related]
4. Impact of Abcc2 (Mrp2) and Abcc3 (Mrp3) on the in vivo elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate. Vlaming ML, Pala Z, van Esch A, Wagenaar E, van Tellingen O, de Waart DR, Oude Elferink RP, van de Wetering K, Schinkel AH. Clin Cancer Res; 2008 Dec 15; 14(24):8152-60. PubMed ID: 19088030 [Abstract] [Full Text] [Related]
7. The effect of ABCG2 and ABCC4 on the pharmacokinetics of methotrexate in the brain. Sane R, Wu SP, Zhang R, Gallo JM. Drug Metab Dispos; 2014 Apr 15; 42(4):537-40. PubMed ID: 24464805 [Abstract] [Full Text] [Related]
9. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Bruhn O, Cascorbi I. Expert Opin Drug Metab Toxicol; 2014 Oct 15; 10(10):1337-54. PubMed ID: 25162314 [Abstract] [Full Text] [Related]
10. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Breedveld P, Zelcer N, Pluim D, Sönmezer O, Tibben MM, Beijnen JH, Schinkel AH, van Tellingen O, Borst P, Schellens JH. Cancer Res; 2004 Aug 15; 64(16):5804-11. PubMed ID: 15313923 [Abstract] [Full Text] [Related]
11. Oral availability and brain penetration of the B-RAFV600E inhibitor vemurafenib can be enhanced by the P-GLYCOprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Mol Pharm; 2012 Nov 05; 9(11):3236-45. PubMed ID: 23020847 [Abstract] [Full Text] [Related]
12. Pharmacogenetic analysis of high-dose methotrexate treatment in children with osteosarcoma. Hegyi M, Arany A, Semsei AF, Csordas K, Eipel O, Gezsi A, Kutszegi N, Csoka M, Muller J, Erdelyi DJ, Antal P, Szalai C, Kovacs GT. Oncotarget; 2017 Feb 07; 8(6):9388-9398. PubMed ID: 27566582 [Abstract] [Full Text] [Related]
13. Increasing systemic exposure of methotrexate by active efflux mediated by multidrug resistance-associated protein 3 (mrp3/abcc3). Kitamura Y, Hirouchi M, Kusuhara H, Schuetz JD, Sugiyama Y. J Pharmacol Exp Ther; 2008 Nov 07; 327(2):465-73. PubMed ID: 18719291 [Abstract] [Full Text] [Related]
15. Leflunomide Increases Hepatic Exposure to Methotrexate and Its Metabolite by Differentially Regulating Multidrug Resistance-Associated Protein Mrp2/3/4 Transporters via Peroxisome Proliferator-Activated Receptor α Activation. Wang L, Ma L, Lin Y, Liu X, Xiao L, Zhang Y, Xu Y, Zhou H, Pan G. Mol Pharmacol; 2018 Jun 07; 93(6):563-574. PubMed ID: 29618584 [Abstract] [Full Text] [Related]
20. Differential impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on axitinib brain accumulation and oral plasma pharmacokinetics. Poller B, Iusuf D, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Drug Metab Dispos; 2011 May 07; 39(5):729-35. PubMed ID: 21282407 [Abstract] [Full Text] [Related] Page: [Next] [New Search]