These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 2156855

  • 1. Dissecting the domain structure of the regulatory subunit of cAMP-dependent protein kinase I and elucidating the role of MgATP.
    Ringheim GE, Taylor SS.
    J Biol Chem; 1990 Mar 25; 265(9):4800-8. PubMed ID: 2156855
    [Abstract] [Full Text] [Related]

  • 2. Role of MgATP in the activation and reassociation of cAMP-dependent protein kinase I: consequences of replacing the essential arginine in cAMP binding site A.
    Neitzel JJ, Dostmann WR, Taylor SS.
    Biochemistry; 1991 Jan 22; 30(3):733-9. PubMed ID: 1846304
    [Abstract] [Full Text] [Related]

  • 3. The consequences of introducing an autophosphorylation site into the type I regulatory subunit of cAMP-dependent protein kinase.
    Durgerian S, Taylor SS.
    J Biol Chem; 1989 Jun 15; 264(17):9807-13. PubMed ID: 2656713
    [Abstract] [Full Text] [Related]

  • 4. Crosstalk between domains in the regulatory subunit of cAMP-dependent protein kinase: influence of amino terminus on cAMP binding and holoenzyme formation.
    Herberg FW, Dostmann WR, Zorn M, Davis SJ, Taylor SS.
    Biochemistry; 1994 Jun 14; 33(23):7485-94. PubMed ID: 8003514
    [Abstract] [Full Text] [Related]

  • 5. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase.
    Herberg FW, Taylor SS, Dostmann WR.
    Biochemistry; 1996 Mar 05; 35(9):2934-42. PubMed ID: 8608131
    [Abstract] [Full Text] [Related]

  • 6. Physiological inhibitors of the catalytic subunit of cAMP-dependent protein kinase: effect of MgATP on protein-protein interactions.
    Herberg FW, Taylor SS.
    Biochemistry; 1993 Dec 21; 32(50):14015-22. PubMed ID: 8268180
    [Abstract] [Full Text] [Related]

  • 7. A point mutation abolishes binding of cAMP to site A in the regulatory subunit of cAMP-dependent protein kinase.
    Bubis J, Neitzel JJ, Saraswat LD, Taylor SS.
    J Biol Chem; 1988 Jul 15; 263(20):9668-73. PubMed ID: 2898473
    [Abstract] [Full Text] [Related]

  • 8. Reconstitution of types I and II adenosine cyclic 3',5'-phosphate dependent protein kinase.
    Bohnert JL, Malencik DA, Anderson SR, Teller D, Fischer EH.
    Biochemistry; 1982 Oct 26; 21(22):5563-70. PubMed ID: 6293546
    [Abstract] [Full Text] [Related]

  • 9. Functional characterization of cAMP-binding mutations in type I protein kinase.
    Correll LA, Woodford TA, Corbin JD, Mellon PL, McKnight GS.
    J Biol Chem; 1989 Oct 05; 264(28):16672-8. PubMed ID: 2550452
    [Abstract] [Full Text] [Related]

  • 10. A constitutively active holoenzyme form of the cAMP-dependent protein kinase.
    Wang YH, Scott JD, McKnight GS, Krebs EG.
    Proc Natl Acad Sci U S A; 1991 Mar 15; 88(6):2446-50. PubMed ID: 1848703
    [Abstract] [Full Text] [Related]

  • 11. Expression and characterization of mutant forms of the type I regulatory subunit of cAMP-dependent protein kinase. The effect of defective cAMP binding on holoenzyme activation.
    Woodford TA, Correll LA, McKnight GS, Corbin JD.
    J Biol Chem; 1989 Aug 05; 264(22):13321-8. PubMed ID: 2546952
    [Abstract] [Full Text] [Related]

  • 12. Identifying the molecular switches that determine whether (Rp)-cAMPS functions as an antagonist or an agonist in the activation of cAMP-dependent protein kinase I.
    Dostmann WR, Taylor SS.
    Biochemistry; 1991 Sep 03; 30(35):8710-6. PubMed ID: 1653606
    [Abstract] [Full Text] [Related]

  • 13. Deletion mutants as probes for localizing regions of subunit interaction in cAMP-dependent protein kinase.
    Saraswat LD, Ringheim GE, Bubis J, Taylor SS.
    J Biol Chem; 1988 Dec 05; 263(34):18241-6. PubMed ID: 2848030
    [Abstract] [Full Text] [Related]

  • 14. Mutations in the autoinhibitor site of the regulatory subunit of cAMP-dependent protein kinase I. Replacement of Ala-97 and Ser-99 interferes with reassociation with the catalytic subunit.
    Buechler YJ, Taylor SS.
    J Biol Chem; 1991 Feb 25; 266(6):3491-7. PubMed ID: 1847375
    [Abstract] [Full Text] [Related]

  • 15. Tyrosine-371 contributes to the positive cooperativity between the two cAMP binding sites in the regulatory subunit of cAMP-dependent protein kinase I.
    Bubis J, Saraswat LD, Taylor SS.
    Biochemistry; 1988 Mar 08; 27(5):1570-6. PubMed ID: 2835094
    [Abstract] [Full Text] [Related]

  • 16. Contribution of the carboxyl-terminal regional of the cAMP-dependent protein kinase type I alpha regulatory subunit to cyclic nucleotide interactions.
    Kapphahn MA, Shabb JB.
    Arch Biochem Biophys; 1997 Dec 15; 348(2):347-56. PubMed ID: 9434747
    [Abstract] [Full Text] [Related]

  • 17. [Mode of action of cyclic amp in prokaryotes and eukaryotes, CAP and cAMP-dependent protein kinases].
    de Gunzburg J.
    Biochimie; 1985 Jun 15; 67(6):563-82. PubMed ID: 2413906
    [Abstract] [Full Text] [Related]

  • 18. The regulatory subunit monomer of cAMP-dependent protein kinase retains the salient kinetic properties of the native dimeric subunit.
    Rannels SR, Cobb CE, Landiss LR, Corbin JD.
    J Biol Chem; 1985 Mar 25; 260(6):3423-30. PubMed ID: 2982860
    [Abstract] [Full Text] [Related]

  • 19. Mutating protein kinase cAMP-binding sites into cGMP-binding sites. Mechanism of cGMP selectivity.
    Shabb JB, Buzzeo BD, Ng L, Corbin JD.
    J Biol Chem; 1991 Dec 25; 266(36):24320-6. PubMed ID: 1662209
    [Abstract] [Full Text] [Related]

  • 20. Conversion of bovine cardiac adenosine cyclic 3',5'-phosphate dependent protein kinase to a heterodimer by removal of 45 residues at the N-terminus of the regulatory subunit.
    Reimann EM.
    Biochemistry; 1986 Jan 14; 25(1):119-25. PubMed ID: 3006747
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.