These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
349 related items for PubMed ID: 21569752
1. Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability. Tran TT, Hashim SO, Gaber Y, Mamo G, Mattiasson B, Hatti-Kaul R. J Inorg Biochem; 2011 Jul; 105(7):1000-7. PubMed ID: 21569752 [Abstract] [Full Text] [Related]
2. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu. Tran TT, Mamo G, Búxo L, Le NN, Gaber Y, Mattiasson B, Hatti-Kaul R. Enzyme Microb Technol; 2011 Jul 10; 49(2):177-82. PubMed ID: 22112406 [Abstract] [Full Text] [Related]
3. Crystal structures of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate. Zeng YF, Ko TP, Lai HL, Cheng YS, Wu TH, Ma Y, Chen CC, Yang CS, Cheng KJ, Huang CH, Guo RT, Liu JR. J Mol Biol; 2011 Jun 03; 409(2):214-24. PubMed ID: 21463636 [Abstract] [Full Text] [Related]
4. Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Ha NC, Oh BC, Shin S, Kim HJ, Oh TK, Kim YO, Choi KY, Oh BH. Nat Struct Biol; 2000 Feb 03; 7(2):147-53. PubMed ID: 10655618 [Abstract] [Full Text] [Related]
5. Molecular and biochemical characteristics of recombinant β-propeller phytase from Bacillus licheniformis strain PB-13 with potential application in aquafeed. Kumar V, Sangwan P, Verma AK, Agrawal S. Appl Biochem Biotechnol; 2014 May 03; 173(2):646-59. PubMed ID: 24687556 [Abstract] [Full Text] [Related]
7. Characterization and application of calcium-dependent β-propeller phytase from Bacillus amyloliquefaciens DS11. Shim JH, Oh BC. J Agric Food Chem; 2012 Aug 01; 60(30):7532-7. PubMed ID: 22775008 [Abstract] [Full Text] [Related]
8. The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization. Borgi MA, Khila M, Boudebbouze S, Aghajari N, Szukala F, Pons N, Maguin E, Rhimi M. Appl Microbiol Biotechnol; 2014 Jul 01; 98(13):5937-47. PubMed ID: 24337251 [Abstract] [Full Text] [Related]
9. Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives. Nam SJ, Kim YO, Ko TK, Kang JK, Chun KH, Auh JH, Lee CS, Lee IK, Park S, Oh BC. J Microbiol Biotechnol; 2014 Oct 01; 24(10):1413-20. PubMed ID: 25112322 [Abstract] [Full Text] [Related]
10. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. Brejnholt SM, Dionisio G, Glitsoe V, Skov LK, Brinch-Pedersen H. J Sci Food Agric; 2011 Jun 01; 91(8):1398-405. PubMed ID: 21387323 [Abstract] [Full Text] [Related]
11. β-propeller phytase hydrolyzes insoluble Ca(2+)-phytate salts and completely abrogates the ability of phytate to chelate metal ions. Kim OH, Kim YO, Shim JH, Jung YS, Jung WJ, Choi WC, Lee H, Lee SJ, Kim KK, Auh JH, Kim H, Kim JW, Oh TK, Oh BC. Biochemistry; 2010 Nov 30; 49(47):10216-27. PubMed ID: 20964370 [Abstract] [Full Text] [Related]
12. Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. Gulati HK, Chadha BS, Saini HS. J Ind Microbiol Biotechnol; 2007 Jan 30; 34(1):91-8. PubMed ID: 16967265 [Abstract] [Full Text] [Related]
13. High level expression of an acid-stable phytase from Citrobacter freundii in Pichia pastoris. Zhao W, Xiong A, Fu X, Gao F, Tian Y, Peng R. Appl Biochem Biotechnol; 2010 Dec 30; 162(8):2157-65. PubMed ID: 20556542 [Abstract] [Full Text] [Related]
14. Purification, characterization and properties of phytase from Shigella sp. CD2. Roy MP, Poddar M, Singh KK, Ghosh S. Indian J Biochem Biophys; 2012 Aug 30; 49(4):266-71. PubMed ID: 23077788 [Abstract] [Full Text] [Related]
15. Alkaline phytase from lily pollen: Investigation of biochemical properties. Jog SP, Garchow BG, Mehta BD, Murthy PP. Arch Biochem Biophys; 2005 Aug 15; 440(2):133-40. PubMed ID: 16051182 [Abstract] [Full Text] [Related]
16. Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573. Boukhris I, Farhat-Khemakhem A, Blibech M, Bouchaala K, Chouayekh H. Int J Biol Macromol; 2015 Sep 15; 80():581-7. PubMed ID: 26188308 [Abstract] [Full Text] [Related]
17. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Huang H, Luo H, Wang Y, Fu D, Shao N, Wang G, Yang P, Yao B. Appl Microbiol Biotechnol; 2008 Sep 15; 80(3):417-26. PubMed ID: 18548246 [Abstract] [Full Text] [Related]
18. Purification and characterization of a phytase from Klebsiella terrigena. Greiner R, Haller E, Konietzny U, Jany KD. Arch Biochem Biophys; 1997 May 15; 341(2):201-6. PubMed ID: 9169005 [Abstract] [Full Text] [Related]
19. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Oh BC, Choi WC, Park S, Kim YO, Oh TK. Appl Microbiol Biotechnol; 2004 Jan 15; 63(4):362-72. PubMed ID: 14586576 [Abstract] [Full Text] [Related]
20. Purification and characterization of a thermostable extracellular phytase from Bacillus licheniformis PFBL-03. Fasimoye FO, Olajuyigbe FM, Sanni MD. Prep Biochem Biotechnol; 2014 Jan 15; 44(2):193-205. PubMed ID: 24152104 [Abstract] [Full Text] [Related] Page: [Next] [New Search]