These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Microextraction and Gas Chromatography/Mass Spectrometry for improved analysis of geosmin and other fungal "off" volatiles in grape juice. Morales-Valle H, Silva LC, Paterson RR, Oliveira JM, Venâncio A, Lima N. J Microbiol Methods; 2010 Oct; 83(1):48-52. PubMed ID: 20655340 [Abstract] [Full Text] [Related]
8. Validation of a predictive model for the growth of Botrytis cinerea and Penicillium expansum on grape berries. Judet-Correia D, Bollaert S, Duquenne A, Charpentier C, Bensoussan M, Dantigny P. Int J Food Microbiol; 2010 Aug 15; 142(1-2):106-13. PubMed ID: 20619474 [Abstract] [Full Text] [Related]
9. Study of amine composition of botrytized grape berries. Kiss J, Korbász M, Sass-Kiss A. J Agric Food Chem; 2006 Nov 15; 54(23):8909-18. PubMed ID: 17090141 [Abstract] [Full Text] [Related]
10. Changes in the volatile compound production of fermentations made from musts with increasing grape content. Keyzers RA, Boss PK. J Agric Food Chem; 2010 Jan 27; 58(2):1153-64. PubMed ID: 20020683 [Abstract] [Full Text] [Related]
11. Transformation ability of fungi isolated from cork and grape to produce 2,4,6-trichloroanisole from 2,4,6-trichlorophenol. Maggi L, Mazzoleni V, Fumi MD, Salinas MR. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Mar 27; 25(3):265-9. PubMed ID: 18311620 [Abstract] [Full Text] [Related]
12. Detection and prediction of Botrytis cinerea infection levels in wine grapes using volatile analysis. Jiang L, Qiu Y, Dumlao MC, Donald WA, Steel CC, Schmidtke LM. Food Chem; 2023 Sep 30; 421():136120. PubMed ID: 37098308 [Abstract] [Full Text] [Related]
13. Influence of the region of origin on the mycobiota of grapes with emphasis on Aspergillus and Penicillium species. Serra R, Lourenço A, Alípio P, Venâncio A. Mycol Res; 2006 Aug 30; 110(Pt 8):971-8. PubMed ID: 16891107 [Abstract] [Full Text] [Related]
14. Characterization of Penicillium species isolated from grape berries by their internal transcribed spacer (ITS1) sequences and by gas chromatography-mass spectrometry analysis of geosmin production. La Guerche S, Garcia C, Darriet P, Dubourdieu D, Labarère J. Curr Microbiol; 2004 Jun 30; 48(6):405-11. PubMed ID: 15170234 [Abstract] [Full Text] [Related]
15. A CAPS test allowing a rapid distinction of Penicillium expansum among fungal species collected on grape berries, inferred from the sequence and secondary structure of the mitochondrial SSU-rRNA. Garcia C, La Guerche S, Mouhamadou B, Férandon C, Labarère J, Blancard D, Darriet P, Barroso G. Int J Food Microbiol; 2006 Oct 01; 111(3):183-90. PubMed ID: 16935376 [Abstract] [Full Text] [Related]
17. Interaction with Penicillium expansum enhances Botrytis cinerea growth in grape juice medium and prevents patulin accumulation in vitro. Morales H, Paterson RR, Venâncio A, Lima N. Lett Appl Microbiol; 2013 May 01; 56(5):356-60. PubMed ID: 23384314 [Abstract] [Full Text] [Related]
18. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS, Martinez A, Liger-Belair G, Jeandet P, Nuzillard JM, Cilindre C. J Exp Bot; 2012 Oct 01; 63(16):5773-85. PubMed ID: 22945941 [Abstract] [Full Text] [Related]
20. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard. Wang XJ, Tao YS, Wu Y, An RY, Yue ZY. Food Chem; 2017 Jul 01; 226():41-50. PubMed ID: 28254017 [Abstract] [Full Text] [Related] Page: [Next] [New Search]