These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 21573686
1. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Lange N, Steinbüchel A. Appl Microbiol Biotechnol; 2011 Sep; 91(6):1611-22. PubMed ID: 21573686 [Abstract] [Full Text] [Related]
2. Stability studies of recombinant Saccharomyces cerevisiae in the presence of varying selection pressure. Gupta JC, Mukherjee KJ. Biotechnol Bioeng; 2002 Jun 05; 78(5):475-88. PubMed ID: 12115116 [Abstract] [Full Text] [Related]
3. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ. Appl Environ Microbiol; 2007 Jul 05; 73(13):4342-50. PubMed ID: 17496128 [Abstract] [Full Text] [Related]
4. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. Fathi Z, Tramontin LRR, Ebrahimipour G, Borodina I, Darvishi F. FEMS Yeast Res; 2021 Jan 16; 21(1):. PubMed ID: 33332529 [Abstract] [Full Text] [Related]
5. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. Li Q, Sun Z, Li J, Zhang Y. FEMS Microbiol Lett; 2013 Aug 16; 345(2):94-101. PubMed ID: 23718229 [Abstract] [Full Text] [Related]
6. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW. J Biotechnol; 2009 Mar 25; 140(3-4):218-26. PubMed ID: 19428716 [Abstract] [Full Text] [Related]
7. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H. Biotechnol Bioeng; 2014 Jan 25; 111(1):125-33. PubMed ID: 23860829 [Abstract] [Full Text] [Related]
8. 2-micron vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis. Hottiger T, Kuhla J, Pohlig G, Fürst P, Spielmann A, Garn M, Haemmerli S, Heim J. Yeast; 1995 Jan 25; 11(1):1-14. PubMed ID: 7762296 [Abstract] [Full Text] [Related]
9. Effects of phosphoglycerate kinase overproduction in Saccharomyces cerevisiae on the physiology and plasmid stability. van der Aar PC, van den Heuvel JJ, Röling WF, Raué HA, Stouthamer AH, van Verseveld HW. Yeast; 1992 Jan 25; 8(1):47-55. PubMed ID: 1580100 [Abstract] [Full Text] [Related]
10. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response. Verwaal R, Jiang Y, Wang J, Daran JM, Sandmann G, van den Berg JA, van Ooyen AJ. Yeast; 2010 Dec 25; 27(12):983-98. PubMed ID: 20632327 [Abstract] [Full Text] [Related]
11. Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene. Araya-Garay JM, Feijoo-Siota L, Rosa-dos-Santos F, Veiga-Crespo P, Villa TG. Appl Microbiol Biotechnol; 2012 Mar 25; 93(6):2483-92. PubMed ID: 22159890 [Abstract] [Full Text] [Related]
12. [Production of β-carotene by metabolically engineered Saccharomyces cerevisiae]. Wang B, Shi M, Wang D, Xu J, Liu Y, Yang H, Dai Z, Zhang X. Sheng Wu Gong Cheng Xue Bao; 2014 Aug 25; 30(8):1204-16. PubMed ID: 25423750 [Abstract] [Full Text] [Related]
13. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis. Lee KM, DaSilva NA. Yeast; 2005 Apr 30; 22(6):431-40. PubMed ID: 15849781 [Abstract] [Full Text] [Related]
14. Lactic fermentation of cellobiose by a yeast strain displaying beta-glucosidase on the cell surface. Tokuhiro K, Ishida N, Kondo A, Takahashi H. Appl Microbiol Biotechnol; 2008 Jun 30; 79(3):481-8. PubMed ID: 18443785 [Abstract] [Full Text] [Related]
15. Production of hantavirus Puumala nucleocapsid protein in Saccharomyces cerevisiae for vaccine and diagnostics. Antoniukas L, Grammel H, Reichl U. J Biotechnol; 2006 Jul 13; 124(2):347-62. PubMed ID: 16513199 [Abstract] [Full Text] [Related]
16. Enhancement of cloned gene product synthesis via autoselection in recombinant Saccharomyces cerevisiae. Napp SJ, Da Silva NA. Biotechnol Bioeng; 1993 Apr 05; 41(8):801-10. PubMed ID: 18609624 [Abstract] [Full Text] [Related]
17. Carbon source-dependent regulation of cell growth by murine protein kinase C epsilon expression in Saccharomyces cerevisiae. Parissenti AM, Villeneuve D, Kirwan-Rhude A, Busch D. J Cell Physiol; 1999 Feb 05; 178(2):216-26. PubMed ID: 10048586 [Abstract] [Full Text] [Related]
18. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae. Rubio-Texeira M, Castrillo JI, Adam AC, Ugalde UO, Polaina J. Yeast; 1998 Jun 30; 14(9):827-37. PubMed ID: 9818720 [Abstract] [Full Text] [Related]
19. Selective fitness of four episomal shuttle-vectors carrying HIS3, LEU2, TRP1, and URA3 selectable markers in Saccharomyces cerevisiae. Ugolini S, Tosato V, Bruschi CV. Plasmid; 2002 Mar 30; 47(2):94-107. PubMed ID: 11982331 [Abstract] [Full Text] [Related]
20. Improved protein synthesis and secretion through medium enrichment in a stable recombinant yeast strain. Wang Z, Da Silva NA. Biotechnol Bioeng; 1993 Jun 05; 42(1):95-102. PubMed ID: 18609652 [Abstract] [Full Text] [Related] Page: [Next] [New Search]