These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


406 related items for PubMed ID: 21574576

  • 1. Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching.
    An B, Hinman MB, Holland GP, Yarger JL, Lewis RV.
    Biomacromolecules; 2011 Jun 13; 12(6):2375-81. PubMed ID: 21574576
    [Abstract] [Full Text] [Related]

  • 2. Reproducing natural spider silks' copolymer behavior in synthetic silk mimics.
    An B, Jenkins JE, Sampath S, Holland GP, Hinman M, Yarger JL, Lewis R.
    Biomacromolecules; 2012 Dec 10; 13(12):3938-48. PubMed ID: 23110450
    [Abstract] [Full Text] [Related]

  • 3. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E, Hsia Y, Yarger JL, Weber W, Lin-Cereghino J, Lin-Cereghino G, Tang S, Agari K, Vierra C.
    Biomacromolecules; 2012 Feb 13; 13(2):304-12. PubMed ID: 22176138
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN.
    Science; 2002 Jan 18; 295(5554):472-6. PubMed ID: 11799236
    [Abstract] [Full Text] [Related]

  • 6. Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s).
    Thamm C, Scheibel T.
    Biomacromolecules; 2017 Apr 10; 18(4):1365-1372. PubMed ID: 28233980
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers.
    Albertson AE, Teulé F, Weber W, Yarger JL, Lewis RV.
    J Mech Behav Biomed Mater; 2014 Jan 10; 29():225-34. PubMed ID: 24113297
    [Abstract] [Full Text] [Related]

  • 9. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia.
    Brooks AE, Steinkraus HB, Nelson SR, Lewis RV.
    Biomacromolecules; 2005 Jan 10; 6(6):3095-9. PubMed ID: 16283732
    [Abstract] [Full Text] [Related]

  • 10. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.
    Zhu Z, Kikuchi Y, Kojima K, Tamura T, Kuwabara N, Nakamura T, Asakura T.
    J Biomater Sci Polym Ed; 2010 Jan 10; 21(3):395-411. PubMed ID: 20178693
    [Abstract] [Full Text] [Related]

  • 11. Mechanical and physical properties of recombinant spider silk films using organic and aqueous solvents.
    Tucker CL, Jones JA, Bringhurst HN, Copeland CG, Addison JB, Weber WS, Mou Q, Yarger JL, Lewis RV.
    Biomacromolecules; 2014 Aug 11; 15(8):3158-70. PubMed ID: 25030809
    [Abstract] [Full Text] [Related]

  • 12. Altering the mechanics of spider silk through methanol post-spin drawing.
    Brooks AE, Creager MS, Lewis RV.
    Biomed Sci Instrum; 2005 Aug 11; 41():1-6. PubMed ID: 15850073
    [Abstract] [Full Text] [Related]

  • 13. Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers.
    Saric M, Scheibel T.
    Biomacromolecules; 2023 Apr 10; 24(4):1744-1750. PubMed ID: 36913547
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Structural conversion of the spidroin C-terminal domain during assembly of spider silk fibers.
    De Oliveira DH, Gowda V, Sparrman T, Gustafsson L, Sanches Pires R, Riekel C, Barth A, Lendel C, Hedhammar M.
    Nat Commun; 2024 May 31; 15(1):4670. PubMed ID: 38821983
    [Abstract] [Full Text] [Related]

  • 16. Structural characterization and mechanical properties of chimeric Masp1/Flag minispidroins.
    Xu S, Li X, Zhou Y, Lin Y, Meng Q.
    Biochimie; 2020 Jan 31; 168():251-258. PubMed ID: 31783091
    [Abstract] [Full Text] [Related]

  • 17. Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials.
    Wen R, Wang K, Meng Q.
    Acta Biomater; 2020 Oct 01; 115():210-219. PubMed ID: 32798722
    [Abstract] [Full Text] [Related]

  • 18. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.
    Adrianos SL, Teulé F, Hinman MB, Jones JA, Weber WS, Yarger JL, Lewis RV.
    Biomacromolecules; 2013 Jun 10; 14(6):1751-60. PubMed ID: 23646825
    [Abstract] [Full Text] [Related]

  • 19. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk.
    Weatherbee-Martin N, Xu L, Hupe A, Kreplak L, Fudge DS, Liu XQ, Rainey JK.
    Biomacromolecules; 2016 Aug 08; 17(8):2737-46. PubMed ID: 27387592
    [Abstract] [Full Text] [Related]

  • 20. Novel nanocomposites from spider silk-silica fusion (chimeric) proteins.
    Wong Po Foo C, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL.
    Proc Natl Acad Sci U S A; 2006 Jun 20; 103(25):9428-33. PubMed ID: 16769898
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.