These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 2158301
21. Kinetic characterization of the acyl-enzyme mechanism for beta-lactamase I. Martin MT, Waley SG. Biochem J; 1988 Sep 15; 254(3):923-5. PubMed ID: 3143353 [Abstract] [Full Text] [Related]
22. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S, Pieper U, Kapadia G, Pannell LK, Herzberg O. Biochemistry; 1998 Mar 10; 37(10):3286-96. PubMed ID: 9521648 [Abstract] [Full Text] [Related]
23. Mechanism of acyl transfer by the class A serine beta-lactamase of Streptomyces albus G. Lamotte-Brasseur J, Dive G, Dideberg O, Charlier P, Frère JM, Ghuysen JM. Biochem J; 1991 Oct 01; 279 ( Pt 1)(Pt 1):213-21. PubMed ID: 1930139 [Abstract] [Full Text] [Related]
28. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase. Adediran SA, Pratt RF. Biochemistry; 1999 Feb 02; 38(5):1469-77. PubMed ID: 9931012 [Abstract] [Full Text] [Related]
29. An engineered Staphylococcus aureus PC1 beta-lactamase that hydrolyses third-generation cephalosporins. Zawadzke LE, Smith TJ, Herzberg O. Protein Eng; 1995 Dec 02; 8(12):1275-85. PubMed ID: 8869640 [Abstract] [Full Text] [Related]
30. Inactivation of Bacillus cereus 569/H beta-lactamase I by 6-beta-(trifluoromethane sulfonyl)amidopenicillanic acid sulfone and its N-methyl derivative. Clarke AJ, Mezes PS, Vice SF, Dmitrienko GI, Viswanatha T. Biochim Biophys Acta; 1983 Nov 14; 748(3):389-97. PubMed ID: 6315063 [Abstract] [Full Text] [Related]
31. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. Mustafi D, Hofer JE, Huang W, Palzkill T, Makinen MW. Spectrochim Acta A Mol Biomol Spectrosc; 2004 May 14; 60(6):1279-89. PubMed ID: 15134725 [Abstract] [Full Text] [Related]
32. Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams. Badarau A, Page MI. Biochemistry; 2006 Sep 12; 45(36):11012-20. PubMed ID: 16953588 [Abstract] [Full Text] [Related]
35. The pH-dependence of class B and class C beta-lactamases. Bicknell R, Knott-Hunziker V, Waley SG. Biochem J; 1983 Jul 01; 213(1):61-6. PubMed ID: 6604522 [Abstract] [Full Text] [Related]
37. Interaction of beta-lactamases I and II from Bacillus cereus with semisynthetic cephamycins. Kinetic studies. Martin Villacorta J, Arriaga P, Laynez J, Menendez M. Biochem J; 1991 Oct 01; 279 ( Pt 1)(Pt 1):111-4. PubMed ID: 1930129 [Abstract] [Full Text] [Related]
38. Changes in the coordination geometry of the active-site metal during catalysis of benzylpenicillin hydrolysis by Bacillus cereus beta-lactamase II. Bicknell R, Schäffer A, Waley SG, Auld DS. Biochemistry; 1986 Nov 04; 25(22):7208-15. PubMed ID: 3099831 [Abstract] [Full Text] [Related]
39. Deacylation Mechanism and Kinetics of Acyl-Enzyme Complex of Class C β-Lactamase and Cephalothin. Tripathi R, Nair NN. J Phys Chem B; 2016 Mar 17; 120(10):2681-90. PubMed ID: 26918257 [Abstract] [Full Text] [Related]
40. Trapping the acyl-enzyme intermediate in beta-lactamase I catalysis. Cartwright SJ, Tan AK, Fink AL. Biochem J; 1989 Nov 01; 263(3):905-12. PubMed ID: 2512916 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]