These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 215838
1. Use of photoaffinity nucleotide analogs to determine the mechanism of ATP regulation of a membrane-bound, cAMP-activated protein kinase. Owens JR, Haley BE. J Supramol Struct; 1978; 9(1):57-68. PubMed ID: 215838 [Abstract] [Full Text] [Related]
7. Induction of the regulatory subunit of type I adenosine cyclic 3':5'-monophosphate-dependent protein kinase in differentiated N-18 mouse neuroblastoma cells. Liu AY, Chan T, Chen KY. Cancer Res; 1981 Nov; 41(11 Pt 1):4579-87. PubMed ID: 6272981 [Abstract] [Full Text] [Related]
9. Localization of the high-affinity ATP site in adenosine-3':5'-monophosphate-dependent protein kinase type I. Photoaffinity labelling studies with 8-azidoadenosine 5'-triphosphate. Hoppe J, Freist W. Eur J Biochem; 1979 Jan 02; 93(1):141-6. PubMed ID: 220043 [Abstract] [Full Text] [Related]
10. Phosphorylation of regulatory subunit of type I cyclic AMP-dependent protein kinase: biphasic effects of cyclic AMP in intact S49 mouse lymphoma cells. Russell JL, Steinberg RA. J Cell Physiol; 1987 Feb 02; 130(2):207-13. PubMed ID: 3029147 [Abstract] [Full Text] [Related]
11. Response of soluble and membrane-bound F1 ATPase of Rhodospirillum rubrum to the photoaffinity label 8-azido ATP. Eul U, Risi S, Schäfer HJ, Dose K. Biochem Int; 1983 Jun 02; 6(6):723-9. PubMed ID: 6237651 [Abstract] [Full Text] [Related]
12. Analysis of the dominance of mutations in cAMP-binding sites of murine type I cAMP-dependent protein kinase in activation of kinase from heterozygous mutant lymphoma cells. Shuntoh H, Steinberg RA. J Cell Physiol; 1991 Jan 02; 146(1):86-93. PubMed ID: 1846638 [Abstract] [Full Text] [Related]
14. [Interaction of N1-, N6- and C8-substituted derivatives of adenosine-5'-triphosphate with the catalytic subunit of cAMP-dependent protein kinase from rabbit skeletal muscles]. Baranova LA, Grivennikov IA, Guliaev NN. Biokhimiia; 1982 Nov 02; 47(11):1806-13. PubMed ID: 6295513 [Abstract] [Full Text] [Related]
15. Adenosine 3',5'-monophosphate-receptor protein and protein kinase in Coprinus macrorhizus. Uno I, Ishikawa T. J Biochem; 1981 Apr 02; 89(4):1275-81. PubMed ID: 6265436 [Abstract] [Full Text] [Related]
16. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Herberg FW, Taylor SS, Dostmann WR. Biochemistry; 1996 Mar 05; 35(9):2934-42. PubMed ID: 8608131 [Abstract] [Full Text] [Related]
17. Increase in type I cyclic adenosine 3':5'-monophosphate-dependent protein kinase activity and specific accumulation of type I regulatory subunits in adenovirus type 12-transformed cells. Ledinko N, Chan IJ. Cancer Res; 1984 Jun 05; 44(6):2622-7. PubMed ID: 6327020 [Abstract] [Full Text] [Related]
18. [Interaction of 8-substituted derivatives and adenosine-3',5'-cyclophosphate esters with protein kinase from pig brain]. Guliaev NN, Tunitskaia VL, Nesterova MV, Mazurova LA, Murtuzaev IM. Biokhimiia; 1977 Nov 05; 42(11):2071-8. PubMed ID: 201309 [Abstract] [Full Text] [Related]
19. Use of nucleotide photoaffinity probes to study hormone action. Khatoon S, Atherton R, Al-Jumaily W, Haley BE. Biol Reprod; 1983 Feb 05; 28(1):61-73. PubMed ID: 6299415 [Abstract] [Full Text] [Related]
20. Regulation of the interaction of purified human erythrocyte AMP deaminase and the human erythrocyte membrane. Pipoly GM, Nathans GR, Chang D, Deuel TF. J Clin Invest; 1979 May 05; 63(5):1066-76. PubMed ID: 36405 [Abstract] [Full Text] [Related] Page: [Next] [New Search]