These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 21585652

  • 1. The Saccharomyces cerevisiae fermentation stress response protein Igd1p/Yfr017p regulates glycogen levels by inhibiting the glycogen debranching enzyme.
    Walkey CJ, Luo Z, Borchers CH, Measday V, van Vuuren HJ.
    FEMS Yeast Res; 2011 Sep; 11(6):499-508. PubMed ID: 21585652
    [Abstract] [Full Text] [Related]

  • 2. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [Abstract] [Full Text] [Related]

  • 3. Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high-affinity Hxt transporters are expressed.
    Perez M, Luyten K, Michel R, Riou C, Blondin B.
    FEMS Yeast Res; 2005 Feb; 5(4-5):351-61. PubMed ID: 15691740
    [Abstract] [Full Text] [Related]

  • 4. Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift.
    Puig S, Pérez-Ortín JE.
    Yeast; 2000 Jan 30; 16(2):139-48. PubMed ID: 10641036
    [Abstract] [Full Text] [Related]

  • 5. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation.
    Rossignol T, Dulau L, Julien A, Blondin B.
    Yeast; 2003 Dec 30; 20(16):1369-85. PubMed ID: 14663829
    [Abstract] [Full Text] [Related]

  • 6. Novel wine-mediated FLO11 flocculation phenotype of commercial Saccharomyces cerevisiae wine yeast strains with modified FLO gene expression.
    Govender P, Kroppenstedt S, Bauer FF.
    FEMS Microbiol Lett; 2011 Apr 30; 317(2):117-26. PubMed ID: 21251052
    [Abstract] [Full Text] [Related]

  • 7. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C, Cárdenas J, Melo F, Agosin E.
    Yeast; 2005 Apr 15; 22(5):369-83. PubMed ID: 15806604
    [Abstract] [Full Text] [Related]

  • 8. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions.
    Jiménez-Martí E, Zuzuarregui A, Ridaura I, Lozano N, del Olmo M.
    Int J Food Microbiol; 2009 Mar 31; 130(2):122-30. PubMed ID: 19217680
    [Abstract] [Full Text] [Related]

  • 9. A novel approach for the improvement of stress resistance in wine yeasts.
    Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo Ml, Aranda A.
    Int J Food Microbiol; 2007 Feb 28; 114(1):83-91. PubMed ID: 17187885
    [Abstract] [Full Text] [Related]

  • 10. Expression of stress response genes in wine strains with different fermentative behavior.
    Zuzuarregui A, del Olmo ML.
    FEMS Yeast Res; 2004 May 28; 4(7):699-710. PubMed ID: 15093773
    [Abstract] [Full Text] [Related]

  • 11. Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1.
    Penacho V, Blondin B, Valero E, Gonzalez R.
    Biotechnol Prog; 2012 May 28; 28(2):327-36. PubMed ID: 22065482
    [Abstract] [Full Text] [Related]

  • 12. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM.
    FEMS Yeast Res; 2008 Nov 28; 8(7):1137-46. PubMed ID: 18503542
    [Abstract] [Full Text] [Related]

  • 13. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C, Nicaud JM, Barre P, Gaillardin C.
    Yeast; 1997 Aug 28; 13(10):903-15. PubMed ID: 9271106
    [Abstract] [Full Text] [Related]

  • 14. Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation.
    Rossouw D, Bauer FF.
    Appl Microbiol Biotechnol; 2009 Oct 28; 84(5):937-54. PubMed ID: 19711068
    [Abstract] [Full Text] [Related]

  • 15. Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell viability after desiccation stress.
    López-Martínez G, Pietrafesa R, Romano P, Cordero-Otero R, Capece A.
    Yeast; 2013 Aug 28; 30(8):319-30. PubMed ID: 23576041
    [Abstract] [Full Text] [Related]

  • 16. Wine yeast sirtuins and Gcn5p control aging and metabolism in a natural growth medium.
    Orozco H, Matallana E, Aranda A.
    Mech Ageing Dev; 2012 May 28; 133(5):348-58. PubMed ID: 22738658
    [Abstract] [Full Text] [Related]

  • 17. Analysis of the genomic response of a wine yeast to rehydration and inoculation.
    Rossignol T, Postaire O, Storaï J, Blondin B.
    Appl Microbiol Biotechnol; 2006 Aug 28; 71(5):699-712. PubMed ID: 16607525
    [Abstract] [Full Text] [Related]

  • 18. MPK1 gene is required for filamentous growth induced by isoamyl alcohol in Saccharomyces cerevisiae strains from the alcoholic fermentation.
    Vancetto GT, Ceccato-Antonini SR.
    Appl Microbiol Biotechnol; 2007 May 28; 75(1):111-5. PubMed ID: 17245577
    [Abstract] [Full Text] [Related]

  • 19. Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification.
    Zuzuarregui A, Carrasco P, Palacios A, Julien A, del Olmo M.
    J Appl Microbiol; 2005 May 28; 98(2):299-307. PubMed ID: 15659184
    [Abstract] [Full Text] [Related]

  • 20. Proteomic characterization of a wild-type wine strain of Saccharomyces cerevisiae.
    Trabalzini L, Paffetti A, Ferro E, Scaloni A, Talamo F, Millucci L, Martelli P, Santucci A.
    Ital J Biochem; 2003 Dec 28; 52(4):145-53. PubMed ID: 15141481
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.