These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 2158818

  • 1. Direct and respiratory chain-mediated redox cycling of adrenochrome.
    Bindoli A, Deeble DJ, Rigobello MP, Galzigna L.
    Biochim Biophys Acta; 1990 Apr 26; 1016(3):349-56. PubMed ID: 2158818
    [Abstract] [Full Text] [Related]

  • 2. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K, Minakami S.
    Biochem J; 1979 Apr 15; 180(1):129-35. PubMed ID: 39543
    [Abstract] [Full Text] [Related]

  • 3. Effects of superoxide dismutase and catalase during reduction of adrenochrome by DT-diaphorase and NADPH-cytochrome P450 reductase.
    Baez S, Segura-Aguilar J.
    Biochem Mol Med; 1995 Oct 15; 56(1):37-44. PubMed ID: 8593536
    [Abstract] [Full Text] [Related]

  • 4. Redox cycling of adrenaline and adrenochrome catalysed by mitochondrial Complex I.
    Genova ML, Abd-Elsalam NM, Mahdy el SM, Bernacchia A, Lucarini M, Pedulli GF, Lenaz G.
    Arch Biochem Biophys; 2006 Mar 15; 447(2):167-73. PubMed ID: 16487923
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG, Vinogradov AD.
    Biochim Biophys Acta; 2006 Mar 15; 1757(5-6):553-61. PubMed ID: 16678117
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB.
    Biokhimiia; 1990 Feb 15; 55(2):195-200. PubMed ID: 2111181
    [Abstract] [Full Text] [Related]

  • 9. Relationships between the effects of redox potential, alpha-thenoyltrifluoroacetone and malonate on O(2) and H2O2 generation by submitochondrial particles in the presence of succinate and antimycin.
    Ksenzenko M, Konstantinov AA, Khomutov GB, Tikhonov AN, Ruuge EK.
    FEBS Lett; 1984 Sep 17; 175(1):105-8. PubMed ID: 6090204
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2.
    Adak S, Bandyopadhyay U, Bandyopadhyay D, Banerjee RK.
    Biochemistry; 1998 Dec 01; 37(48):16922-33. PubMed ID: 9836585
    [Abstract] [Full Text] [Related]

  • 13. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase.
    Segura-Aguilar J, Lind C.
    Chem Biol Interact; 1989 Dec 01; 72(3):309-24. PubMed ID: 2557982
    [Abstract] [Full Text] [Related]

  • 14. [Hysteresis behavior of complex I in delta mu H+-dependent reduction of NAD+ succinate].
    Kotliar AB, Vinogradov AD.
    Biokhimiia; 1989 Jan 01; 54(1):9-16. PubMed ID: 2497801
    [Abstract] [Full Text] [Related]

  • 15. [Inhibition of H2O2 and O2-. generation in the respiratory chain, treated with 2,3-dimercaptopropanol].
    Ksenzenko MIu, Konstantinov AA, Tikhonov AN, Ruuge EK.
    Biokhimiia; 1982 Sep 01; 47(9):1577-9. PubMed ID: 6291643
    [Abstract] [Full Text] [Related]

  • 16. Adriamycin stimulated superoxide formation in submitochondrial particles.
    Thayer WS.
    Chem Biol Interact; 1977 Dec 01; 19(3):265-78. PubMed ID: 202411
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The epinephrine assay for superoxide: why dopamine does not work.
    Alhasan R, Njus D.
    Anal Biochem; 2008 Oct 01; 381(1):142-7. PubMed ID: 18621013
    [Abstract] [Full Text] [Related]

  • 20. Alkoxyl and methyl radical formation during cleavage of tert-butyl hydroperoxide by a mitochondrial membrane-bound, redox active copper pool: an EPR study.
    Massa EM, Giulivi C.
    Free Radic Biol Med; 1993 May 01; 14(5):559-65. PubMed ID: 8394271
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.