These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 21604488
1. [Cardiac arrhythmia classification based on multi-features and support vector machines]. Zhao Y, Hong W, Sun S. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):292-5. PubMed ID: 21604488 [Abstract] [Full Text] [Related]
2. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Asl BM, Setarehdan SK, Mohebbi M. Artif Intell Med; 2008 Sep; 44(1):51-64. PubMed ID: 18585905 [Abstract] [Full Text] [Related]
3. Classification of the electrocardiogram signals using supervised classifiers and efficient features. Zadeh AE, Khazaee A, Ranaee V. Comput Methods Programs Biomed; 2010 Aug; 99(2):179-94. PubMed ID: 20510478 [Abstract] [Full Text] [Related]
4. Cardiac arrhythmia classification using neural networks. Al-Nashash H. Technol Health Care; 2000 Aug; 8(6):363-72. PubMed ID: 11258582 [Abstract] [Full Text] [Related]
5. Medical Decision Support System for Diagnosis of Heart Arrhythmia using DWT and Random Forests Classifier. Alickovic E, Subasi A. J Med Syst; 2016 Apr; 40(4):108. PubMed ID: 26922592 [Abstract] [Full Text] [Related]
6. Heartbeat classification using morphological and dynamic features of ECG signals. Ye C, Kumar BV, Coimbra MT. IEEE Trans Biomed Eng; 2012 Oct; 59(10):2930-41. PubMed ID: 22907960 [Abstract] [Full Text] [Related]
12. Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification. Dutta S, Chatterjee A, Munshi S. Med Eng Phys; 2010 Dec; 32(10):1161-9. PubMed ID: 20833096 [Abstract] [Full Text] [Related]
13. A multi-stage automatic arrhythmia recognition and classification system. Kutlu Y, Kuntalp D. Comput Biol Med; 2011 Jan; 41(1):37-45. PubMed ID: 21183163 [Abstract] [Full Text] [Related]
14. Cardiac arrhythmia beat classification using DOST and PSO tuned SVM. Raj S, Ray KC, Shankar O. Comput Methods Programs Biomed; 2016 Nov; 136():163-77. PubMed ID: 27686713 [Abstract] [Full Text] [Related]
15. Arrhythmia detection and classification using morphological and dynamic features of ECG signals. Ye C, Coimbra MT, Vijaya Kumar BK. Annu Int Conf IEEE Eng Med Biol Soc; 2010 Nov; 2010():1918-21. PubMed ID: 21097000 [Abstract] [Full Text] [Related]
17. Arrhythmia Classification of ECG Signals Using Hybrid Features. Anwar SM, Gul M, Majid M, Alnowami M. Comput Math Methods Med; 2018 Nov; 2018():1380348. PubMed ID: 30538768 [Abstract] [Full Text] [Related]
18. Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification. Qin Q, Li J, Zhang L, Yue Y, Liu C. Sci Rep; 2017 Jul 20; 7(1):6067. PubMed ID: 28729684 [Abstract] [Full Text] [Related]
19. A robust wavelet-based multi-lead Electrocardiogram delineation algorithm. Ghaffari A, Homaeinezhad MR, Akraminia M, Atarod M, Daevaeiha M. Med Eng Phys; 2009 Dec 20; 31(10):1219-27. PubMed ID: 19692287 [Abstract] [Full Text] [Related]
20. Optimal delineation of ambulatory holter ECG events via false-alarm bounded segmentation of a wavelet-based principal components analyzed decision statistic. Homaeinezhad MR, Ghaffari A, Toosi HN, Tahmasebi M, Daevaeiha MM. Cardiovasc Eng; 2010 Sep 20; 10(3):136-56. PubMed ID: 20821349 [Abstract] [Full Text] [Related] Page: [Next] [New Search]