These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 21605694

  • 1. Change of cardiac function, but not form, in postprandial pythons.
    Jensen B, Larsen CK, Nielsen JM, Simonsen LS, Wang T.
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Sep; 160(1):35-42. PubMed ID: 21605694
    [Abstract] [Full Text] [Related]

  • 2. Adaptive regulation of digestive performance in the genus Python.
    Ott BD, Secor SM.
    J Exp Biol; 2007 Jan; 210(Pt 2):340-56. PubMed ID: 17210969
    [Abstract] [Full Text] [Related]

  • 3. Selected regulation of gastrointestinal acid-base secretion and tissue metabolism for the diamondback water snake and Burmese python.
    Secor SM, Taylor JR, Grosell M.
    J Exp Biol; 2012 Jan 01; 215(Pt 1):185-96. PubMed ID: 22162867
    [Abstract] [Full Text] [Related]

  • 4. Physiology: postprandial cardiac hypertrophy in pythons.
    Andersen JB, Rourke BC, Caiozzo VJ, Bennett AF, Hicks JW.
    Nature; 2005 Mar 03; 434(7029):37-8. PubMed ID: 15744290
    [Abstract] [Full Text] [Related]

  • 5. Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus.
    Secor SM, White SE.
    J Exp Biol; 2010 Jan 01; 213(1):78-88. PubMed ID: 20008365
    [Abstract] [Full Text] [Related]

  • 6. Effects of meal size, clutch, and metabolism on the energy efficiencies of juvenile Burmese pythons, Python molurus.
    Cox CL, Secor SM.
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Dec 01; 148(4):861-8. PubMed ID: 17913527
    [Abstract] [Full Text] [Related]

  • 7. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus).
    Slay CE, Enok S, Hicks JW, Wang T.
    J Exp Biol; 2014 May 15; 217(Pt 10):1784-9. PubMed ID: 24311803
    [Abstract] [Full Text] [Related]

  • 8. The effects of fasting duration on the metabolic response to feeding in Python molurus: an evaluation of the energetic costs associated with gastrointestinal growth and upregulation.
    Overgaard J, Andersen JB, Wang T.
    Physiol Biochem Zool; 2002 May 15; 75(4):360-8. PubMed ID: 12324892
    [Abstract] [Full Text] [Related]

  • 9. Effects of meal size on postprandial responses in juvenile Burmese pythons (Python molurus).
    Secor SM, Diamond J.
    Am J Physiol; 1997 Mar 15; 272(3 Pt 2):R902-12. PubMed ID: 9087654
    [Abstract] [Full Text] [Related]

  • 10. The contribution of gastric digestion and ingestion of amino acids on the postprandial rise in oxygen consumption, heart rate and growth of visceral organs in pythons.
    Enok S, Simonsen LS, Wang T.
    Comp Biochem Physiol A Mol Integr Physiol; 2013 May 15; 165(1):46-53. PubMed ID: 23384684
    [Abstract] [Full Text] [Related]

  • 11. Magnetic resonance imaging volumetry for noninvasive measures of phenotypic flexibility during digestion in Burmese pythons.
    Hansen K, Pedersen PB, Pedersen M, Wang T.
    Physiol Biochem Zool; 2013 May 15; 86(1):149-58. PubMed ID: 23303329
    [Abstract] [Full Text] [Related]

  • 12. Matched regulation of gastrointestinal performance in the Burmese python, Python molurus.
    Cox CL, Secor SM.
    J Exp Biol; 2008 Apr 15; 211(Pt 7):1131-40. PubMed ID: 18344488
    [Abstract] [Full Text] [Related]

  • 13. Food composition influences metabolism, heart rate and organ growth during digestion in Python regius.
    Henriksen PS, Enok S, Overgaard J, Wang T.
    Comp Biochem Physiol A Mol Integr Physiol; 2015 May 15; 183():36-44. PubMed ID: 25553896
    [Abstract] [Full Text] [Related]

  • 14. Digestive physiology of the Burmese python: broad regulation of integrated performance.
    Secor SM.
    J Exp Biol; 2008 Dec 15; 211(Pt 24):3767-74. PubMed ID: 19043049
    [Abstract] [Full Text] [Related]

  • 15. Postprandial morphological response of the intestinal epithelium of the Burmese python (Python molurus).
    Lignot JH, Helmstetter C, Secor SM.
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Jul 15; 141(3):280-91. PubMed ID: 16002308
    [Abstract] [Full Text] [Related]

  • 16. Fuel switching and energy partitioning during the postprandial metabolic response in the ball python (Python regius).
    Waas S, Werner RA, Starck JM.
    J Exp Biol; 2010 Apr 15; 213(Pt 8):1266-71. PubMed ID: 20348338
    [Abstract] [Full Text] [Related]

  • 17. Humoral regulation of heart rate during digestion in pythons (Python molurus and Python regius).
    Enok S, Simonsen LS, Pedersen SV, Wang T, Skovgaard N.
    Am J Physiol Regul Integr Comp Physiol; 2012 May 15; 302(10):R1176-83. PubMed ID: 22422667
    [Abstract] [Full Text] [Related]

  • 18. Improved cardiac filling facilitates the postprandial elevation of stroke volume in Python regius.
    Enok S, Leite GS, Leite CA, Gesser H, Hedrick MS, Wang T.
    J Exp Biol; 2016 Oct 01; 219(Pt 19):3009-3018. PubMed ID: 27445352
    [Abstract] [Full Text] [Related]

  • 19. Satiety and eating patterns in two species of constricting snakes.
    Nielsen TP, Jacobsen MW, Wang T.
    Physiol Behav; 2011 Jan 10; 102(1):110-4. PubMed ID: 20828579
    [Abstract] [Full Text] [Related]

  • 20. Cooking and grinding reduces the cost of meat digestion.
    Boback SM, Cox CL, Ott BD, Carmody R, Wrangham RW, Secor SM.
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov 10; 148(3):651-6. PubMed ID: 17827047
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.