These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 21608094
1. Genetic safeguard against mycotoxin cyclopiazonic acid production in Aspergillus oryzae. Kato N, Tokuoka M, Shinohara Y, Kawatani M, Uramoto M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Takahashi S, Koyama Y, Osada H. Chembiochem; 2011 Jun 14; 12(9):1376-82. PubMed ID: 21608094 [Abstract] [Full Text] [Related]
2. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Geiser DM, Dorner JW, Horn BW, Taylor JW. Fungal Genet Biol; 2000 Dec 14; 31(3):169-79. PubMed ID: 11273679 [Abstract] [Full Text] [Related]
3. Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Chang PK, Horn BW, Dorner JW. Fungal Genet Biol; 2009 Feb 14; 46(2):176-82. PubMed ID: 19038354 [Abstract] [Full Text] [Related]
4. Functional analysis of the cyclopiazonic acid biosynthesis gene cluster in Aspergillus oryzae RIB 40. Shinohara Y, Tokuoka M, Koyama Y. Biosci Biotechnol Biochem; 2011 Feb 14; 75(11):2249-52. PubMed ID: 22056451 [Abstract] [Full Text] [Related]
5. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Chang PK, Ehrlich KC. Int J Food Microbiol; 2010 Apr 15; 138(3):189-99. PubMed ID: 20163884 [Abstract] [Full Text] [Related]
6. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Duran RM, Cary JW, Calvo AM. Appl Microbiol Biotechnol; 2007 Jan 15; 73(5):1158-68. PubMed ID: 16988822 [Abstract] [Full Text] [Related]
7. Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Tokuoka M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Koyama Y. Fungal Genet Biol; 2008 Dec 15; 45(12):1608-15. PubMed ID: 18854220 [Abstract] [Full Text] [Related]
8. Aflatoxin non-productivity of Aspergillus oryzae caused by loss of function in the aflJ gene product. Kiyota T, Hamada R, Sakamoto K, Iwashita K, Yamada O, Mikami S. J Biosci Bioeng; 2011 May 15; 111(5):512-7. PubMed ID: 21342785 [Abstract] [Full Text] [Related]
9. Cyclopiazonic acid biosynthesis of Aspergillus flavus and Aspergillus oryzae. Chang PK, Ehrlich KC, Fujii I. Toxins (Basel); 2009 Dec 15; 1(2):74-99. PubMed ID: 22069533 [Abstract] [Full Text] [Related]
10. An evaluation of aflatoxin and cyclopiazonic acid production in Aspergillus oryzae. Kim NY, Lee JH, Lee I, Ji GE. J Food Prot; 2014 Jun 15; 77(6):1010-6. PubMed ID: 24853527 [Abstract] [Full Text] [Related]
11. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Chang PK, Ehrlich KC, Hua SS. Int J Food Microbiol; 2006 Apr 25; 108(2):172-7. PubMed ID: 16430983 [Abstract] [Full Text] [Related]
12. Functional expression of the Aspergillus flavus PKS-NRPS hybrid CpaA involved in the biosynthesis of cyclopiazonic acid. Seshime Y, Juvvadi PR, Tokuoka M, Koyama Y, Kitamoto K, Ebizuka Y, Fujii I. Bioorg Med Chem Lett; 2009 Jun 15; 19(12):3288-92. PubMed ID: 19410456 [Abstract] [Full Text] [Related]
13. Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Blumenthal CZ. Regul Toxicol Pharmacol; 2004 Apr 15; 39(2):214-28. PubMed ID: 15041150 [Abstract] [Full Text] [Related]
14. Co-production of aflatoxins and cyclopiazonic acid in isolates of Aspergillus flavus. Gqaleni N, Smith JE, Lacey J. Food Addit Contam; 1996 Apr 15; 13(6):677-85. PubMed ID: 8871125 [Abstract] [Full Text] [Related]
15. Comparative genome analysis of Aspergillus flavus clinically isolated in Japan. Toyotome T, Hamada S, Yamaguchi S, Takahashi H, Kondoh D, Takino M, Kanesaki Y, Kamei K. DNA Res; 2019 Feb 01; 26(1):95-103. PubMed ID: 30520983 [Abstract] [Full Text] [Related]
16. The effect of domestication on the fungal proteome. Rokas A. Trends Genet; 2009 Feb 01; 25(2):60-3. PubMed ID: 19081651 [Abstract] [Full Text] [Related]
17. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Chang PK, Horn BW, Dorner JW. Fungal Genet Biol; 2005 Nov 01; 42(11):914-23. PubMed ID: 16154781 [Abstract] [Full Text] [Related]
18. Isolation and characterization of koji mold (Aspergillus oryzae) from nature in Niigata. Sakai K, Sato K, Kaneoke M, Kusumoto KI. J Biosci Bioeng; 2024 Nov 01; 138(5):415-422. PubMed ID: 39227280 [Abstract] [Full Text] [Related]
19. Unravelling the Diversity of the Cyclopiazonic Acid Family of Mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS. Uka V, Moore GG, Arroyo-Manzanares N, Nebija D, De Saeger S, Diana Di Mavungu J. Toxins (Basel); 2017 Jan 13; 9(1):. PubMed ID: 28098779 [Abstract] [Full Text] [Related]
20. Heterokaryosis between Aspergillus oryzae cyclopiazonic acid-defective strains: method for estimating the risk of inducing toxin production among cyclopiazonic acid-defective industrial strains. Benkhemmar O, Gaudemer F, Bouvier-Fourcade I. Appl Environ Microbiol; 1985 Oct 13; 50(4):1087-93. PubMed ID: 4083874 [Abstract] [Full Text] [Related] Page: [Next] [New Search]