These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Zhu J, Yu Z, Burkhard GF, Hsu CM, Connor ST, Xu Y, Wang Q, McGehee M, Fan S, Cui Y. Nano Lett; 2009 Jan 25; 9(1):279-82. PubMed ID: 19072061 [Abstract] [Full Text] [Related]
47. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wu D, Zhu H. Nanoscale; 2012 Mar 21; 4(6):2130-3. PubMed ID: 22337348 [Abstract] [Full Text] [Related]
48. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Wang KX, Yu Z, Liu V, Cui Y, Fan S. Nano Lett; 2012 Mar 14; 12(3):1616-9. PubMed ID: 22356436 [Abstract] [Full Text] [Related]
49. Enhanced UV photoresponse of KrF-laser-synthesized single-wall carbon nanotubes/n-silicon hybrid photovoltaic devices. Le Borgne V, Gautier LA, Castrucci P, Del Gobbo S, De Crescenzi M, El Khakani MA. Nanotechnology; 2012 Jun 01; 23(21):215206. PubMed ID: 22551529 [Abstract] [Full Text] [Related]
51. Triangular metallic gratings for large absorption enhancement in thin film Si solar cells. Battal E, Yogurt TA, Aygun LE, Okyay AK. Opt Express; 2012 Apr 23; 20(9):9458-64. PubMed ID: 22535035 [Abstract] [Full Text] [Related]
52. Visible to near-infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics. Nimmo MT, Caillard LM, De Benedetti W, Nguyen HM, Seitz O, Gartstein YN, Chabal YJ, Malko AV. ACS Nano; 2013 Apr 23; 7(4):3236-45. PubMed ID: 23556540 [Abstract] [Full Text] [Related]
53. Silicon nanowires for photovoltaic solar energy conversion. Peng KQ, Lee ST. Adv Mater; 2011 Jan 11; 23(2):198-215. PubMed ID: 20931630 [Abstract] [Full Text] [Related]
54. Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices. de Souza ML, Corio P, Brolo AG. Phys Chem Chem Phys; 2012 Dec 05; 14(45):15722-8. PubMed ID: 23090151 [Abstract] [Full Text] [Related]
55. ZnO nanostructures as efficient antireflection layers in solar cells. Lee YJ, Ruby DS, Peters DW, McKenzie BB, Hsu JW. Nano Lett; 2008 May 05; 8(5):1501-5. PubMed ID: 18416581 [Abstract] [Full Text] [Related]
56. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Lu Y, Lal A. Nano Lett; 2010 Nov 10; 10(11):4651-6. PubMed ID: 20939564 [Abstract] [Full Text] [Related]
57. Ultradense, deep subwavelength nanowire array photovoltaics as engineered optical thin films. Tham D, Heath JR. Nano Lett; 2010 Nov 10; 10(11):4429-34. PubMed ID: 20931993 [Abstract] [Full Text] [Related]
58. Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency. Ahn S, Choi YJ, Kim K, Eo YJ, Cho A, Gwak J, Yun JH, Shin K, Ahn SK, Yoon K. ChemSusChem; 2013 Jul 10; 6(7):1282-7. PubMed ID: 23681958 [Abstract] [Full Text] [Related]
59. Novel silicon nanohemisphere-array solar cells with enhanced performance. Li Y, Yu H, Li J, Wong SM, Sun XW, Li X, Cheng C, Fan HJ, Wang J, Singh N, Lo PG, Kwong DL. Small; 2011 Nov 18; 7(22):3138-43. PubMed ID: 21898793 [No Abstract] [Full Text] [Related]
60. Silicon Microwire Arrays with Nanoscale Spacing for Radial Junction c-Si Solar Cells with an Efficiency of 20.5. Kim N, Choi D, Kim H, Um HD, Seo K. ACS Nano; 2021 Sep 28; 15(9):14756-14765. PubMed ID: 34583468 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]