These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. On line gamma-ray spectrometry at open sea. Tsabaris C, Ballas D. Appl Radiat Isot; 2005 Jan; 62(1):83-9. PubMed ID: 15498689 [Abstract] [Full Text] [Related]
23. Application of NaI(Tl) detector for measurement of natural radionuclides and (137)Cs in environmental samples: new approach by decomposition of measured spectrum. Muminov IT, Muhamedov AK, Osmanov BS, Safarov AA, Safarov AN. J Environ Radioact; 2005 Jan; 84(3):321-31. PubMed ID: 16009470 [Abstract] [Full Text] [Related]
24. Evaluation of Monte Carlo-based calibrations of HPGe detectors for in situ gamma-ray spectrometry. Boson J, Plamboeck AH, Ramebäck H, Agren G, Johansson L. J Environ Radioact; 2009 Nov; 100(11):935-40. PubMed ID: 19604609 [Abstract] [Full Text] [Related]
26. Minimum detectable activity concentration of radio-cesium by a LaBr3(Ce) detector for in situ measurements on the ground-surface and in boreholes. Hasan MM, Rutten J, Camps J, Huysmans M. Appl Radiat Isot; 2022 Jul; 185():110247. PubMed ID: 35452907 [Abstract] [Full Text] [Related]
31. Development of the Environmental Radiation Survey Program and Its Application to In Situ Gamma-Ray Spectrometry. Ji YY, Jang M, Lee W. Health Phys; 2019 Jun; 116(6):840-851. PubMed ID: 30889101 [Abstract] [Full Text] [Related]
33. Radiological impact in Korea following the Fukushima nuclear accident. Kim CK, Byun JI, Chae JS, Choi HY, Choi SW, Kim DJ, Kim YJ, Lee DM, Park WJ, Yim SA, Yun JY. J Environ Radioact; 2012 Sep; 111():70-82. PubMed ID: 22119285 [Abstract] [Full Text] [Related]
34. Environmental radionuclides as contaminants of HPGe gamma-ray spectrometers: Monte Carlo simulations for Modane underground laboratory. Breier R, Brudanin VB, Loaiza P, Piquemal F, Povinec PP, Rukhadze E, Rukhadze N, Štekl I. J Environ Radioact; 2018 Oct; 190-191():134-140. PubMed ID: 29793183 [Abstract] [Full Text] [Related]
35. Implementation of FLUKA for γ-ray applications in the marine environment. Androulakaki EG, Kokkoris M, Skordis E, Fatsea E, Patiris DL, Tsabaris C, Vlastou R. J Environ Radioact; 2016 Nov; 164():253-257. PubMed ID: 27522329 [Abstract] [Full Text] [Related]
36. Application of the Monte Carlo method to study the alpha particle energy spectra for radioactive aerosol sampled by an air filter. Geryes T, Monsanglant-Louvet C, Berger L, Gehin E. Health Phys; 2009 Aug; 97(2):125-31. PubMed ID: 19590272 [Abstract] [Full Text] [Related]
37. Development and deployment of an underway radioactive cesium monitor off the Japanese coast near Fukushima Dai-ichi. Caffrey JA, Higley KA, Farsoni AT, Smith S, Menn S. J Environ Radioact; 2012 Sep; 111():120-5. PubMed ID: 22218134 [Abstract] [Full Text] [Related]
38. Design, construction and characterisation of a portable gamma-ray spectrometer for low-level natural occurring radioactive material ex-situ measurement. Bashir M, Newman RT, Jones P. J Environ Radioact; 2020 Dec; 225():106415. PubMed ID: 33032005 [Abstract] [Full Text] [Related]
39. Development and validation of an automated unit for the extraction of radiocaesium from seawater. Bokor I, Sdraulig S, Jenkinson P, Madamperuma J, Martin P. J Environ Radioact; 2016 Jan; 151 Pt 3():530-6. PubMed ID: 26330020 [Abstract] [Full Text] [Related]
40. Development of an autonomous station for measurements of artificial gamma activity in surface water bodies. Fejgl M, Hýža M. J Environ Radioact; 2019 Aug; 204():42-48. PubMed ID: 30965215 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]