These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
253 related items for PubMed ID: 21613674
1. Estimation of thickness of concentration boundary layers by osmotic volume flux determination. Jasik-Ślęzak JS, Olszówka KM, Slęzak A. Gen Physiol Biophys; 2011 Jun; 30(2):186-95. PubMed ID: 21613674 [Abstract] [Full Text] [Related]
2. [Concentration boundary layers thicknesses estimation method based on measurements of the volume flux of ternary solutions]. Slezak A. Polim Med; 2008 Jun; 38(4):35-9. PubMed ID: 19245083 [Abstract] [Full Text] [Related]
3. [Estimation method of the concentration boundary layers thicknesses in a single-membrane system containing binary solutions]. Slezak A. Polim Med; 2008 Jun; 38(3):47-51. PubMed ID: 19137976 [Abstract] [Full Text] [Related]
4. [Determination of thickness of concentration boundary layers for ternary electrolyte solutions and polymeric membrane]. Jasik-Slezak J, Slezak A. Polim Med; 2010 Jun; 40(4):41-8. PubMed ID: 21387841 [Abstract] [Full Text] [Related]
5. [Mechanical pressure dependencies of the concentration boundary layers for polymeric membrane]. Jasik-Slezak J, Zyska A, Slezak A. Polim Med; 2010 Jun; 40(1):25-9. PubMed ID: 20446526 [Abstract] [Full Text] [Related]
6. Membrane transport of the non-homogeneous non-electrolyte solutions: mathematical model based on the Kedem-Katchalsky and Rayleigh equations. Slezak A. Polim Med; 2007 Jun; 37(1):57-66. PubMed ID: 17703724 [Abstract] [Full Text] [Related]
7. Membrane transport of the non-homogeneous ternary solutions: mathematical model of thicknesses of the concentration boundary layers. Slezak IH, Prochazka B, Slezak A. Polim Med; 2007 Jun; 37(1):67-71. PubMed ID: 17703725 [Abstract] [Full Text] [Related]
8. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions]. Slezak A, Grzegorczyn S. Polim Med; 2007 Jun; 37(2):67-79. PubMed ID: 17957950 [Abstract] [Full Text] [Related]
9. [Model equations for graviosmotic flows in double-membrane system]. Slezak A. Polim Med; 2009 Jun; 39(1):3-15. PubMed ID: 19580169 [Abstract] [Full Text] [Related]
10. A development of the generalized Spiegler-Kedem-Katchalsky model equations for interactions of hydrated species in transport through polymeric membranes. Slezak A, Grzegorczyn S. Polim Med; 2006 Jun; 36(4):43-51. PubMed ID: 17402232 [Abstract] [Full Text] [Related]
15. Osmotic, diffusive and convective volume and solute flows of ionic solutions through a horizontally mounted polymeric membrane. Jasik-Slezak J, Grzegorczyn S, Slezak A. Polim Med; 2007 Jun; 37(3):31-46. PubMed ID: 18251203 [Abstract] [Full Text] [Related]
16. Developing Kedem-Katchalsky equations of the transmembrane transport for binary nonhomogeneous non-electrolyte solutions. Slezak A, Jarzyńska M. Polim Med; 2005 Jun; 35(1):15-20. PubMed ID: 16050073 [Abstract] [Full Text] [Related]
20. [Mathematical model of the membrane transport of ternary non-electrolyte solutions: the role of volume flows in creation of concentration boundary layers]. Jasik-Slezak J, Slezak A. Polim Med; 2007 Jun; 37(1):73-9. PubMed ID: 17703726 [Abstract] [Full Text] [Related] Page: [Next] [New Search]