These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


237 related items for PubMed ID: 216163

  • 1. Potassium adaptation after reduction of nephron population.
    Hayslett JP.
    Yale J Biol Med; 1978; 51(3):283-8. PubMed ID: 216163
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The role of cortical Na,K-ATPase in distal nephron potassium secretion by the immature canine kidney.
    Lorenz JM, Manuli MA, Browne LE.
    Pediatr Res; 1991 Nov; 30(5):457-63. PubMed ID: 1661396
    [Abstract] [Full Text] [Related]

  • 8. Effect of chronic ethanol consumption on postnatal development of renal (Na + K)-ATPase in the rat.
    Rodrigo R, Vergara L, Oberhauser E.
    Cell Biochem Funct; 1991 Jul; 9(3):215-22. PubMed ID: 1661209
    [Abstract] [Full Text] [Related]

  • 9. Role of medullary Na-K-ATPase in renal potassium adaption.
    Finkelstein FO, Hayslett JP.
    Am J Physiol; 1975 Aug; 229(2):524-8. PubMed ID: 126024
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis.
    Layton AT, Edwards A, Vallon V.
    Am J Physiol Renal Physiol; 2018 Apr 01; 314(4):F643-F657. PubMed ID: 29357444
    [Abstract] [Full Text] [Related]

  • 12. Relation of Na-K-ATPase to acute changes in renal tubular sodium and potassium transport.
    Katz AI, Lindheimer MD.
    J Gen Physiol; 1975 Aug 01; 66(2):209-22. PubMed ID: 126301
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Potassium transport by the isolated perfused kidney.
    Silva P, Ross BD, Charney AN, Besarab A, Epstein FH.
    J Clin Invest; 1975 Oct 01; 56(4):862-9. PubMed ID: 125766
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Functional adaptation to reduction in renal mass.
    Hayslett JP.
    Physiol Rev; 1979 Jan 01; 59(1):137-64. PubMed ID: 220646
    [Abstract] [Full Text] [Related]

  • 18. Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
    Layton AT, Edwards A, Vallon V.
    Am J Physiol Renal Physiol; 2017 Aug 01; 313(2):F199-F209. PubMed ID: 28331059
    [Abstract] [Full Text] [Related]

  • 19. High protein intake accelerates the maturation of Na,K-ATPase in rat renal tubules.
    Jakobsson B, Aperia A.
    Acta Physiol Scand; 1990 May 01; 139(1):1-7. PubMed ID: 2162620
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.