These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 21626536
1. Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Ferreira AD, Mussatto SI, Cadete RM, Rosa CA, Silva SS. Yeast; 2011 Jul; 28(7):547-54. PubMed ID: 21626536 [Abstract] [Full Text] [Related]
2. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest. Cadete RM, Melo MA, Dussán KJ, Rodrigues RC, Silva SS, Zilli JE, Vital MJ, Gomes FC, Lachance MA, Rosa CA. PLoS One; 2012 Jul; 7(8):e43135. PubMed ID: 22912807 [Abstract] [Full Text] [Related]
3. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Silva JP, Mussatto SI, Roberto IC. Appl Biochem Biotechnol; 2010 Nov; 162(5):1306-15. PubMed ID: 19946760 [Abstract] [Full Text] [Related]
4. Production of bioethanol in sugarcane bagasse hemicellulosic hydrolysate by Scheffersomyces parashehatae, Scheffersomyces illinoinensis and Spathaspora arborariae isolated from Brazilian ecosystems. Cadete RM, Melo-Cheab MA, Dussán KJ, Rodrigues RCLB, da Silva SS, Gomes FCO, Rosa CA. J Appl Microbiol; 2017 Nov; 123(5):1203-1213. PubMed ID: 28799253 [Abstract] [Full Text] [Related]
5. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Su YK, Willis LB, Jeffries TW. Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099 [Abstract] [Full Text] [Related]
6. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Canilha L, Carvalho W, Felipe Md, Silva JB, Giulietti M. Appl Biochem Biotechnol; 2010 May; 161(1-8):84-92. PubMed ID: 19802721 [Abstract] [Full Text] [Related]
7. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, Pichyangkura R, Rengpipat S, Eurwilaichitr L. J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110 [Abstract] [Full Text] [Related]
8. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Martín C, Marcet M, Almazán O, Jönsson LJ. Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451 [Abstract] [Full Text] [Related]
9. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag. Slininger PJ, Thompson SR, Weber S, Liu ZL, Moon J. Biotechnol Bioeng; 2011 Aug; 108(8):1801-15. PubMed ID: 21370229 [Abstract] [Full Text] [Related]
10. Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: effect of cell concentration and stirring. Milessi TS, Antunes FA, Chandel AK, da Silva SS. Bioengineered; 2015 Aug; 6(1):26-32. PubMed ID: 25488725 [Abstract] [Full Text] [Related]
11. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Kumari R, Pramanik K. Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357 [Abstract] [Full Text] [Related]
12. Production of ethanol and xylanolytic enzymes by yeasts inhabiting rotting wood isolated in sugarcane bagasse hydrolysate. Morais CG, Sena LMF, Lopes MR, Santos ARO, Barros KO, Alves CR, Uetanabaro APT, Lachance MA, Rosa CA. Fungal Biol; 2020 Jul; 124(7):639-647. PubMed ID: 32540187 [Abstract] [Full Text] [Related]
13. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A. Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [Abstract] [Full Text] [Related]
14. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production. Geiger M, Gibbons J, West T, Hughes SR, Gibbons W. J Lab Autom; 2012 Dec; 17(6):417-24. PubMed ID: 22786982 [Abstract] [Full Text] [Related]
15. Ethanol production from corn cob hydrolysates by Escherichia coli KO11. de Carvalho Lima KG, Takahashi CM, Alterthum F. J Ind Microbiol Biotechnol; 2002 Sep; 29(3):124-8. PubMed ID: 12242633 [Abstract] [Full Text] [Related]
16. Insertional tagging of the Scheffersomyces stipitis gene HEM25 involved in regulation of glucose and xylose alcoholic fermentation. Berezka K, Semkiv M, Borbuliak M, Blomqvist J, Linder T, Ruchała J, Dmytruk K, Passoth V, Sibirny A. Cell Biol Int; 2021 Mar; 45(3):507-517. PubMed ID: 31829471 [Abstract] [Full Text] [Related]
17. Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Lin TH, Huang CF, Guo GL, Hwang WS, Huang SL. Bioresour Technol; 2012 Jul; 116():314-9. PubMed ID: 22537402 [Abstract] [Full Text] [Related]
18. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Unrean P, Nguyen NH. Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940 [Abstract] [Full Text] [Related]
19. Biovalorization potential of peels of Ananas cosmosus (L.) Merr. for ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077. Bhatia L, Johri S. Indian J Exp Biol; 2015 Dec; 53(12):819-27. PubMed ID: 26742327 [Abstract] [Full Text] [Related]
20. D-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella. Sena LM, Morais CG, Lopes MR, Santos RO, Uetanabaro AP, Morais PB, Vital MJ, de Morais MA, Lachance MA, Rosa CA. Antonie Van Leeuwenhoek; 2017 Jan; 110(1):53-67. PubMed ID: 27688209 [Abstract] [Full Text] [Related] Page: [Next] [New Search]