These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 21634406

  • 1. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ, Zheng YG, Zhang HW, Chen Z.
    Langmuir; 2011 Jul 05; 27(13):8323-32. PubMed ID: 21634406
    [Abstract] [Full Text] [Related]

  • 2. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship.
    Lin J, Zhang H, Chen Z, Zheng Y.
    ACS Nano; 2010 Sep 28; 4(9):5421-9. PubMed ID: 20799717
    [Abstract] [Full Text] [Related]

  • 3. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H.
    J Phys Chem A; 2009 Apr 23; 113(16):4780-7. PubMed ID: 19035669
    [Abstract] [Full Text] [Related]

  • 4. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model.
    Lee H, Larson RG.
    J Phys Chem B; 2006 Sep 21; 110(37):18204-11. PubMed ID: 16970437
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP, Gkeka P, Sarkisov L.
    Langmuir; 2011 Apr 05; 27(7):3723-30. PubMed ID: 21391652
    [Abstract] [Full Text] [Related]

  • 7. Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles.
    Lee OS, Schatz GC.
    Methods Mol Biol; 2011 Apr 05; 726():283-96. PubMed ID: 21424456
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles.
    Shen Z, Baker W, Ye H, Li Y.
    Nanoscale; 2019 Apr 11; 11(15):7371-7385. PubMed ID: 30938720
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer.
    Alkilany AM, Frey RL, Ferry JL, Murphy CJ.
    Langmuir; 2008 Sep 16; 24(18):10235-9. PubMed ID: 18700748
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC, Alexander-Katz A.
    Soft Matter; 2015 Apr 28; 11(16):3165-75. PubMed ID: 25757187
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Gold nanoparticles generated in ethosome bilayers, as revealed by cryo-electron-tomography.
    de la Presa P, Rueda T, del Puerto Morales M, Javier Chichón F, Arranz R, Valpuesta JM, Hernando A.
    J Phys Chem B; 2009 Mar 12; 113(10):3051-7. PubMed ID: 19708264
    [Abstract] [Full Text] [Related]

  • 20. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL, Caramori GF, Rambo CR.
    Phys Chem Chem Phys; 2013 Feb 21; 15(7):2282-90. PubMed ID: 23223270
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.