These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
229 related items for PubMed ID: 21635139
1. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Michielse CB, Becker M, Heller J, Moraga J, Collado IG, Tudzynski P. Mol Plant Microbe Interact; 2011 Sep; 24(9):1074-85. PubMed ID: 21635139 [Abstract] [Full Text] [Related]
2. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. Heller J, Ruhnke N, Espino JJ, Massaroli M, Collado IG, Tudzynski P. Mol Plant Microbe Interact; 2012 Jun; 25(6):802-16. PubMed ID: 22352714 [Abstract] [Full Text] [Related]
3. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. Schumacher J, Simon A, Cohrs KC, Traeger S, Porquier A, Dalmais B, Viaud M, Tudzynski B. Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818 [Abstract] [Full Text] [Related]
6. Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea. Yang Q, Chen Y, Ma Z. Fungal Genet Biol; 2013 Jan; 50():63-71. PubMed ID: 23147398 [Abstract] [Full Text] [Related]
8. Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Simon A, Dalmais B, Morgant G, Viaud M. Fungal Genet Biol; 2013 Mar; 52():9-19. PubMed ID: 23396263 [Abstract] [Full Text] [Related]
9. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M. FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079 [Abstract] [Full Text] [Related]
10. Botrytis caroliniana, a new species isolated from blackberry in South Carolina. Li X, Kerrigan J, Chai W, Schnabel G. Mycologia; 2012 Dec; 104(3):650-8. PubMed ID: 22314589 [Abstract] [Full Text] [Related]
11. The Autophagy Gene BcATG8 Regulates the Vegetative Differentiation and Pathogenicity of Botrytis cinerea. Ren W, Liu N, Sang C, Shi D, Zhou M, Chen C, Qin Q, Chen W. Appl Environ Microbiol; 2018 Jun 01; 84(11):. PubMed ID: 29572212 [Abstract] [Full Text] [Related]
12. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Botrytis cinerea. Sun J, Sun CH, Chang HW, Yang S, Liu Y, Zhang MZ, Hou J, Zhang H, Li GH, Qin QM. Int J Mol Sci; 2021 Feb 08; 22(4):. PubMed ID: 33567582 [Abstract] [Full Text] [Related]
13. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Yan L, Yang Q, Sundin GW, Li H, Ma Z. Fungal Genet Biol; 2010 Sep 08; 47(9):753-60. PubMed ID: 20595070 [Abstract] [Full Text] [Related]
14. Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. Chen LH, Lin CH, Chung KR. Fungal Genet Biol; 2012 Oct 08; 49(10):802-13. PubMed ID: 22902811 [Abstract] [Full Text] [Related]
15. The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes. Lin CH, Yang SL, Wang NY, Chung KR. Fungal Genet Biol; 2010 Apr 08; 47(4):381-91. PubMed ID: 20036749 [Abstract] [Full Text] [Related]
17. Botrytis cinerea BcNma is involved in apoptotic cell death but not in stress adaptation. Finkelshtein A, Shlezinger N, Bunis O, Sharon A. Fungal Genet Biol; 2011 Jun 08; 48(6):621-30. PubMed ID: 21277985 [Abstract] [Full Text] [Related]
18. Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Walker AS, Gautier AL, Confais J, Martinho D, Viaud M, Le P Cheur P, Dupont J, Fournier E. Phytopathology; 2011 Dec 08; 101(12):1433-45. PubMed ID: 21830954 [Abstract] [Full Text] [Related]
19. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P. Mol Plant Microbe Interact; 2008 Jun 08; 21(6):808-19. PubMed ID: 18624644 [Abstract] [Full Text] [Related]
20. Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea. Viefhues A, Schlathoelter I, Simon A, Viaud M, Tudzynski P. Eukaryot Cell; 2015 Jul 08; 14(7):636-51. PubMed ID: 25934690 [Abstract] [Full Text] [Related] Page: [Next] [New Search]