These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


434 related items for PubMed ID: 21637870

  • 1. Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study.
    Lin Q, Zou X, Zhou G, Liu R, Wu J, Li J, Duan W.
    Phys Chem Chem Phys; 2011 Jul 14; 13(26):12225-30. PubMed ID: 21637870
    [Abstract] [Full Text] [Related]

  • 2. Boron-Carbon-Nitride Sheet as a Novel Surface for Biological Applications: Insights from Density Functional Theory.
    Mir SH, Yadav VK, Singh JK.
    ACS Omega; 2019 Feb 28; 4(2):3732-3738. PubMed ID: 31459586
    [Abstract] [Full Text] [Related]

  • 3. Exploiting the optical sensing of fluorophore-tagged DNA nucleobases on hexagonal BN and Al-doped BN sheets: a computational study.
    Bhai S, Ganguly B.
    Phys Chem Chem Phys; 2022 Jan 04; 24(2):829-841. PubMed ID: 34928284
    [Abstract] [Full Text] [Related]

  • 4. Binding of DNA nucleobases and nucleosides with graphene.
    Varghese N, Mogera U, Govindaraj A, Das A, Maiti PK, Sood AK, Rao CN.
    Chemphyschem; 2009 Jan 12; 10(1):206-10. PubMed ID: 18814150
    [Abstract] [Full Text] [Related]

  • 5. Physisorption of nucleobases on graphene: a comparative van der Waals study.
    Le D, Kara A, Schröder E, Hyldgaard P, Rahman TS.
    J Phys Condens Matter; 2012 Oct 24; 24(42):424210. PubMed ID: 23032709
    [Abstract] [Full Text] [Related]

  • 6. Ab initio determination of the ionization potentials of DNA and RNA nucleobases.
    Roca-Sanjuán D, Rubio M, Merchán M, Serrano-Andrés L.
    J Chem Phys; 2006 Aug 28; 125(8):084302. PubMed ID: 16965007
    [Abstract] [Full Text] [Related]

  • 7. The nature of the adsorption of nucleobases on the gold [111] surface.
    Piana S, Bilic A.
    J Phys Chem B; 2006 Nov 23; 110(46):23467-71. PubMed ID: 17107199
    [Abstract] [Full Text] [Related]

  • 8. Anhydrous crystals of DNA bases are wide gap semiconductors.
    Maia FF, Freire VN, Caetano EW, Azevedo DL, Sales FA, Albuquerque EL.
    J Chem Phys; 2011 May 07; 134(17):175101. PubMed ID: 21548706
    [Abstract] [Full Text] [Related]

  • 9. On the aromatic character of the heterocyclic bases of DNA and RNA.
    Cyrański MK, Gilski M, Jaskólski M, Krygowski TM.
    J Org Chem; 2003 Oct 31; 68(22):8607-13. PubMed ID: 14575493
    [Abstract] [Full Text] [Related]

  • 10. Non-covalent interactions: complexes of guanidinium with DNA and RNA nucleobases.
    Blanco F, Kelly B, Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J, Rozas I.
    J Phys Chem B; 2013 Oct 03; 117(39):11608-16. PubMed ID: 23992551
    [Abstract] [Full Text] [Related]

  • 11. The electron affinities of deprotonated adenine, guanine, cytosine, uracil, and thymine.
    Chen EC, Wiley JR, Chen ES.
    Nucleosides Nucleotides Nucleic Acids; 2008 May 03; 27(5):506-24. PubMed ID: 18569789
    [Abstract] [Full Text] [Related]

  • 12. Understanding the interaction of DNA-RNA nucleobases with different ZnO nanomaterials.
    Saha S, Sarkar P.
    Phys Chem Chem Phys; 2014 Aug 07; 16(29):15355-66. PubMed ID: 24942064
    [Abstract] [Full Text] [Related]

  • 13. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P, Hobza P.
    J Am Chem Soc; 2003 Dec 17; 125(50):15608-13. PubMed ID: 14664608
    [Abstract] [Full Text] [Related]

  • 14. Adsorption of nucleobase pairs on hexagonal boron nitride sheet: hydrogen bonding versus stacking.
    Ding N, Chen X, Wu CM, Li H.
    Phys Chem Chem Phys; 2013 Jul 14; 15(26):10767-76. PubMed ID: 23689542
    [Abstract] [Full Text] [Related]

  • 15. The electron affinities of the radicals formed by the loss of an aromatic hydrogen atom from adenine, guanine, cytosine, uracil, and thymine.
    Chen ES, Chen EC, Sane N.
    Biochem Biophys Res Commun; 1998 May 08; 246(1):228-30. PubMed ID: 9600097
    [Abstract] [Full Text] [Related]

  • 16. Nucleobases as supramolecular motifs.
    Sivakova S, Rowan SJ.
    Chem Soc Rev; 2005 Jan 08; 34(1):9-21. PubMed ID: 15643486
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV).
    Francés-Monerris A, Segarra-Martí J, Merchán M, Roca-Sanjuán D.
    J Chem Phys; 2015 Dec 07; 143(21):215101. PubMed ID: 26646889
    [Abstract] [Full Text] [Related]

  • 19. The UV absorption of nucleobases: semi-classical ab initio spectra simulations.
    Barbatti M, Aquino AJ, Lischka H.
    Phys Chem Chem Phys; 2010 May 21; 12(19):4959-67. PubMed ID: 20445902
    [Abstract] [Full Text] [Related]

  • 20. Investigation of proton transport tautomerism in clusters of protonated nucleic acid bases (cytosine, uracil, thymine, and adenine) and ammonia by high-pressure mass spectrometry and ab initio calculations.
    Wu R, McMahon TB.
    J Am Chem Soc; 2007 Jan 24; 129(3):569-80. PubMed ID: 17227020
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.