These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 21640358
1. Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate. Chowdhury I, Hong Y, Honda RJ, Walker SL. J Colloid Interface Sci; 2011 Aug 15; 360(2):548-55. PubMed ID: 21640358 [Abstract] [Full Text] [Related]
2. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Chen G, Liu X, Su C. Langmuir; 2011 May 03; 27(9):5393-402. PubMed ID: 21446737 [Abstract] [Full Text] [Related]
3. Transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration. Rahman T, George J, Shipley HJ. Sci Total Environ; 2013 Oct 01; 463-464():565-71. PubMed ID: 23835066 [Abstract] [Full Text] [Related]
4. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Godinez IG, Darnault CJ. Water Res; 2011 Jan 01; 45(2):839-51. PubMed ID: 20947120 [Abstract] [Full Text] [Related]
5. Deposition mechanisms of TiO2 nanoparticles in a parallel plate system. Chowdhury I, Walker SL. J Colloid Interface Sci; 2012 Mar 01; 369(1):16-22. PubMed ID: 22226475 [Abstract] [Full Text] [Related]
6. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter. Li C, Hassan A, Palmai M, Xie Y, Snee PT, Powell BA, Murdoch LC, Darnault CJG. Environ Sci Pollut Res Int; 2021 Feb 01; 28(7):8050-8073. PubMed ID: 33051847 [Abstract] [Full Text] [Related]
7. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH. Fang J, Xu MJ, Wang DJ, Wen B, Han JY. Water Res; 2013 Mar 01; 47(3):1399-408. PubMed ID: 23276424 [Abstract] [Full Text] [Related]
8. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Solovitch N, Labille J, Rose J, Chaurand P, Borschneck D, Wiesner MR, Bottero JY. Environ Sci Technol; 2010 Jul 01; 44(13):4897-902. PubMed ID: 20524647 [Abstract] [Full Text] [Related]
9. Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. Fatisson J, Domingos RF, Wilkinson KJ, Tufenkji N. Langmuir; 2009 Jun 02; 25(11):6062-9. PubMed ID: 19466771 [Abstract] [Full Text] [Related]
10. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. Torkzaban S, Bradford SA, van Genuchten MT, Walker SL. J Contam Hydrol; 2008 Feb 19; 96(1-4):113-27. PubMed ID: 18068262 [Abstract] [Full Text] [Related]
11. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size. Kamrani S, Rezaei M, Kord M, Baalousha M. Water Res; 2018 Apr 15; 133():338-347. PubMed ID: 28864305 [Abstract] [Full Text] [Related]
12. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Bradford SA, Torkzaban S, Walker SL. Water Res; 2007 Jul 15; 41(13):3012-24. PubMed ID: 17475302 [Abstract] [Full Text] [Related]
13. Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Li Z, Sahle-Demessie E, Hassan AA, Sorial GA. Water Res; 2011 Oct 01; 45(15):4409-18. PubMed ID: 21708395 [Abstract] [Full Text] [Related]
14. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Pettibone JM, Cwiertny DM, Scherer M, Grassian VH. Langmuir; 2008 Jun 01; 24(13):6659-67. PubMed ID: 18537279 [Abstract] [Full Text] [Related]
15. Macromolecule mediated transport and retention of Escherichia coli O157:H7 in saturated porous media. Kim HN, Walker SL, Bradford SA. Water Res; 2010 Feb 01; 44(4):1082-93. PubMed ID: 19853881 [Abstract] [Full Text] [Related]
16. Retention and release of TiO2 nanoparticles in unsaturated porous media during dynamic saturation change. Chen L, Sabatini DA, Kibbey TC. J Contam Hydrol; 2010 Nov 25; 118(3-4):199-207. PubMed ID: 20739092 [Abstract] [Full Text] [Related]
17. Factors controlling transport of graphene oxide nanoparticles in saturated sand columns. Qi Z, Zhang L, Wang F, Hou L, Chen W. Environ Toxicol Chem; 2014 May 25; 33(5):998-1004. PubMed ID: 24453090 [Abstract] [Full Text] [Related]
18. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. Wang D, Bradford SA, Harvey RW, Gao B, Cang L, Zhou D. Environ Sci Technol; 2012 Mar 06; 46(5):2738-45. PubMed ID: 22316080 [Abstract] [Full Text] [Related]
19. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm. Jiang X, Wang X, Tong M, Kim H. Environ Pollut; 2013 Mar 06; 174():38-49. PubMed ID: 23246745 [Abstract] [Full Text] [Related]
20. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media. Kim HN, Walker SL, Bradford SA. Water Res; 2010 Feb 06; 44(4):1213-23. PubMed ID: 19854467 [Abstract] [Full Text] [Related] Page: [Next] [New Search]