These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 21641210
1. A discovery of novel Mycobacterium tuberculosis pantothenate synthetase inhibitors based on the molecular mechanism of actinomycin D inhibition. Yang Y, Gao P, Liu Y, Ji X, Gan M, Guan Y, Hao X, Li Z, Xiao C. Bioorg Med Chem Lett; 2011 Jul 01; 21(13):3943-6. PubMed ID: 21641210 [Abstract] [Full Text] [Related]
2. Development of novel tetrahydrothieno[2,3-c]pyridine-3-carboxamide based Mycobacterium tuberculosis pantothenate synthetase inhibitors: molecular hybridization from known antimycobacterial leads. Samala G, Devi PB, Nallangi R, Sridevi JP, Saxena S, Yogeeswari P, Sriram D. Bioorg Med Chem; 2014 Mar 15; 22(6):1938-47. PubMed ID: 24565972 [Abstract] [Full Text] [Related]
3. Identification and development of 2-methylimidazo[1,2-a]pyridine-3-carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Samala G, Nallangi R, Devi PB, Saxena S, Yadav R, Sridevi JP, Yogeeswari P, Sriram D. Bioorg Med Chem; 2014 Aug 01; 22(15):4223-32. PubMed ID: 24953948 [Abstract] [Full Text] [Related]
4. 5-tert-butyl-N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[d]isoxazole-3-carboxamide derivatives as novel potent inhibitors of Mycobacterium tuberculosis pantothenate synthetase: initiating a quest for new antitubercular drugs. Velaparthi S, Brunsteiner M, Uddin R, Wan B, Franzblau SG, Petukhov PA. J Med Chem; 2008 Apr 10; 51(7):1999-2002. PubMed ID: 18335974 [Abstract] [Full Text] [Related]
5. Optimization of Inhibitors of Mycobacterium tuberculosis Pantothenate Synthetase Based on Group Efficiency Analysis. Hung AW, Silvestre HL, Wen S, George GP, Boland J, Blundell TL, Ciulli A, Abell C. ChemMedChem; 2016 Jan 05; 11(1):38-42. PubMed ID: 26486566 [Abstract] [Full Text] [Related]
6. A novel inhibitor of Mycobacterium tuberculosis pantothenate synthetase. White EL, Southworth K, Ross L, Cooley S, Gill RB, Sosa MI, Manouvakhova A, Rasmussen L, Goulding C, Eisenberg D, Fletcher TM. J Biomol Screen; 2007 Feb 05; 12(1):100-5. PubMed ID: 17175524 [Abstract] [Full Text] [Related]
7. Structure-based prediction of Mycobacterium tuberculosis shikimate kinase inhibitors by high-throughput virtual screening. Segura-Cabrera A, Rodríguez-Pérez MA. Bioorg Med Chem Lett; 2008 Jun 01; 18(11):3152-7. PubMed ID: 18486472 [Abstract] [Full Text] [Related]
8. Functionalized 3-amino-imidazo[1,2-a]pyridines: a novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Odell LR, Nilsson MT, Gising J, Lagerlund O, Muthas D, Nordqvist A, Karlén A, Larhed M. Bioorg Med Chem Lett; 2009 Aug 15; 19(16):4790-3. PubMed ID: 19560924 [Abstract] [Full Text] [Related]
9. Design of Novel Mycobacterium tuberculosis Pantothenate Synthetase Inhibitors: Virtual Screening, Synthesis and In Vitro Biological Activities. Devi PB, Jogula S, Reddy AP, Saxena S, Sridevi JP, Sriram D, Yogeeswari P. Mol Inform; 2015 Feb 15; 34(2-3):147-59. PubMed ID: 27490037 [Abstract] [Full Text] [Related]
10. Exploring acyclic nucleoside analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. Familiar O, Munier-Lehmann H, Negri A, Gago F, Douguet D, Rigouts L, Hernández AI, Camarasa MJ, Pérez-Pérez MJ. ChemMedChem; 2008 Jul 15; 3(7):1083-93. PubMed ID: 18418833 [Abstract] [Full Text] [Related]
11. Development of 3-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine derivatives as novel Mycobacterium tuberculosis pantothenate synthetase inhibitors. Samala G, Devi PB, Nallangi R, Yogeeswari P, Sriram D. Eur J Med Chem; 2013 Nov 15; 69():356-64. PubMed ID: 24077526 [Abstract] [Full Text] [Related]
12. Structure-guided design of thiazolidine derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Devi PB, Samala G, Sridevi JP, Saxena S, Alvala M, Salina EG, Sriram D, Yogeeswari P. ChemMedChem; 2014 Nov 15; 9(11):2538-47. PubMed ID: 25155986 [Abstract] [Full Text] [Related]
13. Knowledge based identification of potent antitubercular compounds using structure based virtual screening and structure interaction fingerprints. Kumar A, Chaturvedi V, Bhatnagar S, Sinha S, Siddiqi MI. J Chem Inf Model; 2009 Jan 15; 49(1):35-42. PubMed ID: 19063713 [Abstract] [Full Text] [Related]
14. Elucidation of Mycobacterium tuberculosis type II dehydroquinase inhibitors using a fragment elaboration strategy. Tran AT, West NP, Britton WJ, Payne RJ. ChemMedChem; 2012 Jun 15; 7(6):1031-43. PubMed ID: 22461418 [Abstract] [Full Text] [Related]
17. Substitution of the phosphonic acid and hydroxamic acid functionalities of the DXR inhibitor FR900098: an attempt to improve the activity against Mycobacterium tuberculosis. Andaloussi M, Lindh M, Björkelid C, Suresh S, Wieckowska A, Iyer H, Karlén A, Larhed M. Bioorg Med Chem Lett; 2011 Sep 15; 21(18):5403-7. PubMed ID: 21824775 [Abstract] [Full Text] [Related]
18. A new family of inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. Gasse C, Huteau V, Douguet D, Munier-Lehmann H, Pochet S. Nucleosides Nucleotides Nucleic Acids; 2007 Sep 15; 26(8-9):1057-61. PubMed ID: 18058536 [No Abstract] [Full Text] [Related]
19. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase. Kosikowska P, Bochno M, Macegoniuk K, Forlani G, Kafarski P, Berlicki Ł. J Enzyme Inhib Med Chem; 2016 Dec 15; 31(6):931-8. PubMed ID: 26235917 [Abstract] [Full Text] [Related]