These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


380 related items for PubMed ID: 21643371

  • 1. Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate.
    Spinelli P, van Lare C, Verhagen E, Polman A.
    Opt Express; 2011 May 09; 19 Suppl 3():A303-11. PubMed ID: 21643371
    [Abstract] [Full Text] [Related]

  • 2. Optical impedance matching using coupled plasmonic nanoparticle arrays.
    Spinelli P, Hebbink M, de Waele R, Black L, Lenzmann F, Polman A.
    Nano Lett; 2011 Apr 13; 11(4):1760-5. PubMed ID: 21410242
    [Abstract] [Full Text] [Related]

  • 3. Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates.
    Beck FJ, Verhagen E, Mokkapati S, Polman A, Catchpole KR.
    Opt Express; 2011 Mar 14; 19 Suppl 2():A146-56. PubMed ID: 21445216
    [Abstract] [Full Text] [Related]

  • 4. Observation of Fano resonances in all-dielectric nanoparticle oligomers.
    Chong KE, Hopkins B, Staude I, Miroshnichenko AE, Dominguez J, Decker M, Neshev DN, Brener I, Kivshar YS.
    Small; 2014 May 28; 10(10):1985-90. PubMed ID: 24616191
    [Abstract] [Full Text] [Related]

  • 5. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS, El-Sayed MA.
    J Phys Chem B; 2006 Oct 05; 110(39):19220-5. PubMed ID: 17004772
    [Abstract] [Full Text] [Related]

  • 6. Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates.
    Chen H, Shao L, Ming T, Woo KC, Man YC, Wang J, Lin HQ.
    ACS Nano; 2011 Aug 23; 5(8):6754-63. PubMed ID: 21786827
    [Abstract] [Full Text] [Related]

  • 7. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U, Turan R.
    Opt Express; 2010 Aug 02; 18(16):17322-38. PubMed ID: 20721120
    [Abstract] [Full Text] [Related]

  • 8. Designing dielectric resonators on substrates: combining magnetic and electric resonances.
    van de Groep J, Polman A.
    Opt Express; 2013 Nov 04; 21(22):26285-302. PubMed ID: 24216852
    [Abstract] [Full Text] [Related]

  • 9. Multiple Sharp Fano Resonances in a Deep-Subwavelength Spherical Hyperbolic Metamaterial Cavity.
    Gu P, Guo Y, Chen J, Zhang Z, Yan Z, Liu F, Tang C, Du W, Chen Z.
    Nanomaterials (Basel); 2021 Sep 04; 11(9):. PubMed ID: 34578616
    [Abstract] [Full Text] [Related]

  • 10. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA.
    Acc Chem Res; 2008 Dec 04; 41(12):1578-86. PubMed ID: 18447366
    [Abstract] [Full Text] [Related]

  • 11. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing.
    Liang Y, Peng W, Li L, Qian S, Wang Q.
    Opt Lett; 2015 Aug 15; 40(16):3909-12. PubMed ID: 26274691
    [Abstract] [Full Text] [Related]

  • 12. Fano resonances in plasmonic nanoparticle aggregates.
    Mirin NA, Bao K, Nordlander P.
    J Phys Chem A; 2009 Apr 23; 113(16):4028-34. PubMed ID: 19371111
    [Abstract] [Full Text] [Related]

  • 13. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J, Fan C, He J, Ding P, Liang E, Xue Q.
    Opt Express; 2013 Jan 28; 21(2):2236-44. PubMed ID: 23389204
    [Abstract] [Full Text] [Related]

  • 14. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT, Blake P, DeJarnette D, Roper DK.
    Opt Express; 2014 Jul 28; 22(15):17791-803. PubMed ID: 25089400
    [Abstract] [Full Text] [Related]

  • 15. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures.
    Fu YH, Zhang JB, Yu YF, Luk'yanchuk B.
    ACS Nano; 2012 Jun 26; 6(6):5130-7. PubMed ID: 22577794
    [Abstract] [Full Text] [Related]

  • 16. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.
    Ahmadivand A, Pala N.
    Appl Spectrosc; 2015 Jun 26; 69(2):277-86. PubMed ID: 25587712
    [Abstract] [Full Text] [Related]

  • 17. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing.
    Cetin AE, Altug H.
    ACS Nano; 2012 Nov 27; 6(11):9989-95. PubMed ID: 23092386
    [Abstract] [Full Text] [Related]

  • 18. Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy.
    Kim SM, Zhang W, Cunningham BT.
    Opt Express; 2010 Mar 01; 18(5):4300-9. PubMed ID: 20389441
    [Abstract] [Full Text] [Related]

  • 19. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z, Ye J.
    Nanoscale; 2016 Oct 14; 8(40):17665-17674. PubMed ID: 27714114
    [Abstract] [Full Text] [Related]

  • 20. Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays.
    Burrows CP, Barnes WL.
    Opt Express; 2010 Feb 01; 18(3):3187-98. PubMed ID: 20174158
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.