These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
162 related items for PubMed ID: 21644241
1. Polymer brushes showing non-fouling in blood plasma challenge the currently accepted design of protein resistant surfaces. Rodriguez-Emmenegger C, Brynda E, Riedel T, Houska M, Šubr V, Alles AB, Hasan E, Gautrot JE, Huck WT. Macromol Rapid Commun; 2011 Jul 01; 32(13):952-7. PubMed ID: 21644241 [Abstract] [Full Text] [Related]
2. Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma--material selection and protein immobilization optimization. Vaisocherová H, Zhang Z, Yang W, Cao Z, Cheng G, Taylor AD, Piliarik M, Homola J, Jiang S. Biosens Bioelectron; 2009 Mar 15; 24(7):1924-30. PubMed ID: 19036575 [Abstract] [Full Text] [Related]
6. Surfaces resistant to fouling from biological fluids: towards bioactive surfaces for real applications. Rodriguez-Emmenegger C, Houska M, Alles AB, Brynda E. Macromol Biosci; 2012 Oct 15; 12(10):1413-22. PubMed ID: 22930486 [Abstract] [Full Text] [Related]
7. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY. Langmuir; 2010 Mar 02; 26(5):3522-30. PubMed ID: 19947616 [Abstract] [Full Text] [Related]
8. Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization. Liu Q, Singh A, Lalani R, Liu L. Biomacromolecules; 2012 Apr 09; 13(4):1086-92. PubMed ID: 22385371 [Abstract] [Full Text] [Related]
10. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Kizhakkedathu JN, Janzen J, Le Y, Kainthan RK, Brooks DE. Langmuir; 2009 Apr 09; 25(6):3794-801. PubMed ID: 19708153 [Abstract] [Full Text] [Related]
11. Poly(HEMA) brushes emerging as a new platform for direct detection of food pathogen in milk samples. Rodriguez-Emmenegger C, Avramenko OA, Brynda E, Skvor J, Alles AB. Biosens Bioelectron; 2011 Jul 15; 26(11):4545-51. PubMed ID: 21664120 [Abstract] [Full Text] [Related]
12. Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Surman F, Riedel T, Bruns M, Kostina NY, Sedláková Z, Rodriguez-Emmenegger C. Macromol Biosci; 2015 May 15; 15(5):636-46. PubMed ID: 25644402 [Abstract] [Full Text] [Related]
16. Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Gao C, Li G, Xue H, Yang W, Zhang F, Jiang S. Biomaterials; 2010 Mar 15; 31(7):1486-92. PubMed ID: 19962753 [Abstract] [Full Text] [Related]
17. Cooperative adsorption of lipoprotein phospholipids, triglycerides, and cholesteryl esters are a key factor in nonspecific adsorption from blood plasma to antifouling polymer surfaces. Gunkel G, Huck WT. J Am Chem Soc; 2013 May 08; 135(18):7047-52. PubMed ID: 23581703 [Abstract] [Full Text] [Related]
18. Antifouling poly(β-peptoid)s. Lin S, Zhang B, Skoumal MJ, Ramunno B, Li X, Wesdemiotis C, Liu L, Jia L. Biomacromolecules; 2011 Jul 11; 12(7):2573-82. PubMed ID: 21585194 [Abstract] [Full Text] [Related]