These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 216465

  • 1. Spontaneous phagocytosis of C-type synaptic terminals by spinal alpha-motoneurons in newborn kittens. An electron microscopic study.
    Ronnevi LO.
    Brain Res; 1979 Feb 23; 162(2):189-99. PubMed ID: 216465
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Vesicle shape and amino acids in synaptic inputs to phrenic motoneurons: do all inputs contain either glutamate or GABA?
    Murphy SM, Pilowsky PM, Llewellyn-Smith IJ.
    J Comp Neurol; 1996 Sep 16; 373(2):200-19. PubMed ID: 8889922
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. The morphological relationships between substance P immunoreactive processes and ventral horn neurons in the human and monkey spinal cord.
    de Lanerolle NC, LaMotte CC.
    J Comp Neurol; 1982 Jun 01; 207(4):305-13. PubMed ID: 6181100
    [Abstract] [Full Text] [Related]

  • 11. Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography.
    Ralston HJ, Ralston DD.
    J Neurocytol; 1979 Apr 01; 8(2):151-66. PubMed ID: 112222
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Origin of the glial processes responsible for the spontaneous postnatal phagocytosis of boutons on cat spinal motoneurons.
    Ronnevi LO.
    Cell Tissue Res; 1978 May 29; 189(2):203-17. PubMed ID: 657238
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Morphology and distribution of the synapses to the spinal motoneuron of the frog.
    Voss C, Schiller A, Taugner R.
    Cell Tissue Res; 1980 May 29; 213(2):253-71. PubMed ID: 6970087
    [Abstract] [Full Text] [Related]

  • 17. Leucine-enkephalin-like immunoreactive afferent fibers to pudendal motoneurons in the cat.
    Konishi A, Itoh K, Sugimoto T, Yasui Y, Kaneko T, Takada M, Mizuno N.
    Neurosci Lett; 1985 Oct 24; 61(1-2):109-13. PubMed ID: 4080250
    [Abstract] [Full Text] [Related]

  • 18. Development of axosomatic synapses of the Xenopus spinal cord with special reference to subsurface cisterns and C-type synapses.
    Watanabe H.
    J Comp Neurol; 1981 Aug 10; 200(3):323-8. PubMed ID: 7276242
    [Abstract] [Full Text] [Related]

  • 19. Morphology and frequency of axon terminals on the somata, proximal dendrites, and distal dendrites of dorsal neck motoneurons in the cat.
    Rose PK, Neuber-Hess M.
    J Comp Neurol; 1991 May 08; 307(2):259-80. PubMed ID: 1856325
    [Abstract] [Full Text] [Related]

  • 20. A quantitative light microscopic study of the dendrites of cat spinal gamma -motoneurons after intracellular staining with horseradish peroxidase.
    Ulfhake B, Cullheim S.
    J Comp Neurol; 1981 Nov 10; 202(4):585-96. PubMed ID: 7298917
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.