These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
700 related items for PubMed ID: 21648448
1. Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes. Zoppe JO, Osterberg M, Venditti RA, Laine J, Rojas OJ. Biomacromolecules; 2011 Jul 11; 12(7):2788-96. PubMed ID: 21648448 [Abstract] [Full Text] [Related]
2. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. Zoppe JO, Venditti RA, Rojas OJ. J Colloid Interface Sci; 2012 Mar 01; 369(1):202-9. PubMed ID: 22204973 [Abstract] [Full Text] [Related]
3. Structure of poly(N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. Hemraz UD, Lu A, Sunasee R, Boluk Y. J Colloid Interface Sci; 2014 Sep 15; 430():157-65. PubMed ID: 24998068 [Abstract] [Full Text] [Related]
4. Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J. Biomacromolecules; 2010 Oct 11; 11(10):2683-91. PubMed ID: 20843063 [Abstract] [Full Text] [Related]
5. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals. Azzam F, Siqueira E, Fort S, Hassaini R, Pignon F, Travelet C, Putaux JL, Jean B. Biomacromolecules; 2016 Jun 13; 17(6):2112-9. PubMed ID: 27116589 [Abstract] [Full Text] [Related]
6. Double-stimuli-responsive spherical polymer brushes with a poly(ionic liquid) core and a thermoresponsive shell. Men Y, Drechsler M, Yuan J. Macromol Rapid Commun; 2013 Nov 13; 34(21):1721-7. PubMed ID: 24186465 [Abstract] [Full Text] [Related]
7. Effect of Surface Charge on Surface-Initiated Atom Transfer Radical Polymerization from Cellulose Nanocrystals in Aqueous Media. Zoppe JO, Xu X, Känel C, Orsolini P, Siqueira G, Tingaut P, Zimmermann T, Klok HA. Biomacromolecules; 2016 Apr 11; 17(4):1404-13. PubMed ID: 26901869 [Abstract] [Full Text] [Related]
8. Synthesis of dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid)-grafted cellulose nanocrystals by reversible addition-fragmentation chain transfer polymerization. Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H. J Biomed Mater Res A; 2018 Jan 11; 106(1):231-243. PubMed ID: 28891247 [Abstract] [Full Text] [Related]
9. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Kan KH, Li J, Wijesekera K, Cranston ED. Biomacromolecules; 2013 Sep 09; 14(9):3130-9. PubMed ID: 23865631 [Abstract] [Full Text] [Related]
10. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O. Biomacromolecules; 2011 Aug 08; 12(8):2997-3006. PubMed ID: 21740051 [Abstract] [Full Text] [Related]
11. Interfacial property modulation of thermoresponsive polymer brush surfaces and their interaction with biomolecules. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Langmuir; 2007 Aug 28; 23(18):9409-15. PubMed ID: 17683149 [Abstract] [Full Text] [Related]
12. Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Azzam F, Heux L, Putaux JL, Jean B. Biomacromolecules; 2010 Dec 13; 11(12):3652-9. PubMed ID: 21058640 [Abstract] [Full Text] [Related]
13. Modulation of graft architectures for enhancing hydrophobic interaction of biomolecules with thermoresponsive polymer-grafted surfaces. Idota N, Kikuchi A, Kobayashi J, Sakai K, Okano T. Colloids Surf B Biointerfaces; 2012 Nov 01; 99():95-101. PubMed ID: 22143027 [Abstract] [Full Text] [Related]
14. Influence of graft interface polarity on hydration/dehydration of grafted thermoresponsive polymer brushes and steroid separation using all-aqueous chromatography. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Annaka M, Kanazawa H, Okano T. Langmuir; 2008 Oct 07; 24(19):10981-7. PubMed ID: 18781790 [Abstract] [Full Text] [Related]
15. Thermoresponsive poly(N-isopropyl acrylamide)-grafted polycaprolactone films with surface immobilization of collagen. Xu FJ, Zheng YQ, Zhen WJ, Yang WT. Colloids Surf B Biointerfaces; 2011 Jun 15; 85(1):40-7. PubMed ID: 20980132 [Abstract] [Full Text] [Related]
16. Temperature-responsive cellulose by ceric(IV) ion-initiated graft copolymerization of N-isopropylacrylamide. Gupta KC, Khandekar K. Biomacromolecules; 2003 Jun 15; 4(3):758-65. PubMed ID: 12741795 [Abstract] [Full Text] [Related]
17. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Kizhakkedathu JN, Janzen J, Le Y, Kainthan RK, Brooks DE. Langmuir; 2009 Apr 09; 25(6):3794-801. PubMed ID: 19708153 [Abstract] [Full Text] [Related]
18. Thermally Switchable Liquid Crystals Based on Cellulose Nanocrystals with Patchy Polymer Grafts. Risteen B, Delepierre G, Srinivasarao M, Weder C, Russo P, Reichmanis E, Zoppe J. Small; 2018 Nov 09; 14(46):e1802060. PubMed ID: 30198146 [Abstract] [Full Text] [Related]
19. Controlled coagulation and redispersion of thermoresponsive poly di(ethylene oxide) methyl ether methacrylate grafted cellulose nanocrystals. Brinatti C, Akhlaghi SP, Pires-Oliveira R, Bernardinelli OD, Berry RM, Tam KC, Loh W. J Colloid Interface Sci; 2019 Mar 07; 538():51-61. PubMed ID: 30500467 [Abstract] [Full Text] [Related]
20. A thermo-sensitive NIPA-based co-polymer and monosize polycationic nanoparticle for non-viral gene transfer to smooth muscle cells. Laçin NT, Utkan GG, Kutsal T, Pişkin E. J Biomater Sci Polym Ed; 2012 Mar 07; 23(5):577-92. PubMed ID: 21310109 [Abstract] [Full Text] [Related] Page: [Next] [New Search]