These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


388 related items for PubMed ID: 21650197

  • 1. Polarizable water networks in ligand-metalloprotein recognition. Impact on the relative complexation energies of Zn-dependent phosphomannose isomerase with D-mannose 6-phosphate surrogates.
    Gresh N, de Courcy B, Piquemal JP, Foret J, Courtiol-Legourd S, Salmon L.
    J Phys Chem B; 2011 Jun 30; 115(25):8304-16. PubMed ID: 21650197
    [Abstract] [Full Text] [Related]

  • 2. Binding of 5-phospho-D-arabinonohydroxamate and 5-phospho-D-arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics.
    Roux C, Gresh N, Perera LE, Piquemal JP, Salmon L.
    J Comput Chem; 2007 Apr 15; 28(5):938-57. PubMed ID: 17253648
    [Abstract] [Full Text] [Related]

  • 3. The reaction mechanism of type I phosphomannose isomerases: new information from inhibition and polarizable molecular mechanics studies.
    Roux C, Bhatt F, Foret J, de Courcy B, Gresh N, Piquemal JP, Jeffery CJ, Salmon L.
    Proteins; 2011 Jan 15; 79(1):203-20. PubMed ID: 21058398
    [Abstract] [Full Text] [Related]

  • 4. Synthesis and evaluation of non-hydrolyzable D-mannose 6-phosphate surrogates reveal 6-deoxy-6-dicarboxymethyl-D-mannose as a new strong inhibitor of phosphomannose isomerases.
    Foret J, de Courcy B, Gresh N, Piquemal JP, Salmon L.
    Bioorg Med Chem; 2009 Oct 15; 17(20):7100-7. PubMed ID: 19783448
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of type I and type II phosphomannose isomerases by the reaction intermediate analogue 5-phospho-D-arabinonohydroxamic acid supports a catalytic role for the metal cofactor.
    Roux C, Lee JH, Jeffery CJ, Salmon L.
    Biochemistry; 2004 Mar 16; 43(10):2926-34. PubMed ID: 15005628
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Computational study of human phosphomannose isomerase: Insights from homology modeling and molecular dynamics simulation of enzyme bound substrate.
    Xiao J, Guo Z, Guo Y, Chu F, Sun P.
    J Mol Graph Model; 2006 Nov 16; 25(3):289-95. PubMed ID: 16488169
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown.
    Gresh N, Perahia D, de Courcy B, Foret J, Roux C, El-Khoury L, Piquemal JP, Salmon L.
    J Comput Chem; 2016 Dec 15; 37(32):2770-2782. PubMed ID: 27699809
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Mono- and bivalent ligands bearing mannose 6-phosphate (M6P) surrogates: targeting the M6P/insulin-like growth factor II receptor.
    Berkowitz DB, Maiti G, Charette BD, Dreis CD, MacDonald RG.
    Org Lett; 2004 Dec 23; 6(26):4921-4. PubMed ID: 15606100
    [Abstract] [Full Text] [Related]

  • 12. Polarizable molecular mechanics studies of Cu(I)/Zn(II) superoxide dismutase: bimetallic binding site and structured waters.
    Gresh N, El Hage K, Perahia D, Piquemal JP, Berthomieu C, Berthomieu D.
    J Comput Chem; 2014 Nov 05; 35(29):2096-106. PubMed ID: 25212748
    [Abstract] [Full Text] [Related]

  • 13. Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallel ab initio computations.
    Gresh N, Piquemal JP, Krauss M.
    J Comput Chem; 2005 Aug 05; 26(11):1113-30. PubMed ID: 15934064
    [Abstract] [Full Text] [Related]

  • 14. Synthesis and evaluation of malonate-based inhibitors of phosphosugar-metabolizing enzymes: class II fructose-1,6-bis-phosphate aldolases, type I phosphomannose isomerase, and phosphoglucose isomerase.
    Desvergnes S, Courtiol-Legourd S, Daher R, Dabrowski M, Salmon L, Therisod M.
    Bioorg Med Chem; 2012 Feb 15; 20(4):1511-20. PubMed ID: 22269276
    [Abstract] [Full Text] [Related]

  • 15. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics.
    Antony J, Gresh N, Olsen L, Hemmingsen L, Schofield CJ, Bauer R.
    J Comput Chem; 2002 Oct 15; 23(13):1281-96. PubMed ID: 12210153
    [Abstract] [Full Text] [Related]

  • 16. Identification of Cys-150 in the active site of phosphomannose isomerase from Candida albicans.
    Coulin F, Magnenat E, Proudfoot AE, Payton MA, Scully P, Wells TN.
    Biochemistry; 1993 Dec 28; 32(51):14139-44. PubMed ID: 8260497
    [Abstract] [Full Text] [Related]

  • 17. Cloning and heterologous expression of the Candida albicans gene PMI 1 encoding phosphomannose isomerase.
    Smith DJ, Proudfoot AE, Detiani M, Wells TN, Payton MA.
    Yeast; 1995 Apr 15; 11(4):301-10. PubMed ID: 7785330
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum chemistry.
    Antony J, Piquemal JP, Gresh N.
    J Comput Chem; 2005 Aug 15; 26(11):1131-47. PubMed ID: 15937993
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.