These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 21657983

  • 1. The role of fibroblasts in self-assembled skeletal muscle.
    Li M, Dickinson CE, Finkelstein EB, Neville CM, Sundback CA.
    Tissue Eng Part A; 2011 Nov; 17(21-22):2641-50. PubMed ID: 21657983
    [Abstract] [Full Text] [Related]

  • 2. Rapid formation of functional muscle in vitro using fibrin gels.
    Huang YC, Dennis RG, Larkin L, Baar K.
    J Appl Physiol (1985); 2005 Feb; 98(2):706-13. PubMed ID: 15475606
    [Abstract] [Full Text] [Related]

  • 3. Engineering vascularized skeletal muscle tissue.
    Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D'Amore PA, Langer R.
    Nat Biotechnol; 2005 Jul; 23(7):879-84. PubMed ID: 15965465
    [Abstract] [Full Text] [Related]

  • 4. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M, Ito A, Kawabe Y, Nagamori E, Kamihira M.
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [Abstract] [Full Text] [Related]

  • 5. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle.
    Koning M, Werker PM, van Luyn MJ, Harmsen MC.
    Tissue Eng Part A; 2011 Jul; 17(13-14):1747-58. PubMed ID: 21438665
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. 3-D in vitro model of early skeletal muscle development.
    Cheema U, Yang SY, Mudera V, Goldspink GG, Brown RA.
    Cell Motil Cytoskeleton; 2003 Mar; 54(3):226-36. PubMed ID: 12589681
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Regulating fibrinolysis to engineer skeletal muscle from the C2C12 cell line.
    Khodabukus A, Baar K.
    Tissue Eng Part C Methods; 2009 Sep; 15(3):501-11. PubMed ID: 19191517
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering.
    Boonen KJ, Langelaan ML, Polak RB, van der Schaft DW, Baaijens FP, Post MJ.
    J Biomech; 2010 May 28; 43(8):1514-21. PubMed ID: 20189177
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives.
    Shimizu K, Fujita H, Nagamori E.
    Biotechnol Bioeng; 2009 Jun 15; 103(3):631-8. PubMed ID: 19189396
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.