These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 21660357
1. Bioelectrocatalytic generation of directly readable code: harnessing cathodic current for long-term information relay. Strack G, Luckarift HR, Nichols R, Cozart K, Katz E, Johnson GR. Chem Commun (Camb); 2011 Jul 21; 47(27):7662-4. PubMed ID: 21660357 [Abstract] [Full Text] [Related]
3. Scanning electrochemical microscopy activity mapping of electrodes modified with laccase encapsulated in sol-gel processed matrix. Nogala W, Szot K, Burchardt M, Jönsson-Niedziolka M, Rogalski J, Wittstock G, Opallo M. Bioelectrochemistry; 2010 Aug 21; 79(1):101-7. PubMed ID: 20097139 [Abstract] [Full Text] [Related]
4. Wiring laccase on covalently modified graphene: carbon nanotube assemblies for the direct bio-electrocatalytic reduction of oxygen. Lalaoui N, Le Goff A, Holzinger M, Mermoux M, Cosnier S. Chemistry; 2015 Feb 16; 21(8):3198-201. PubMed ID: 25504469 [Abstract] [Full Text] [Related]
5. Electrical contacting of redox enzymes by means of oligoaniline-cross-linked enzyme/carbon nanotube composites. Baravik I, Tel-Vered R, Ovits O, Willner I. Langmuir; 2009 Dec 15; 25(24):13978-83. PubMed ID: 19673510 [Abstract] [Full Text] [Related]
6. High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates. Ramasamy RP, Luckarift HR, Ivnitski DM, Atanassov PB, Johnson GR. Chem Commun (Camb); 2010 Sep 07; 46(33):6045-7. PubMed ID: 20571702 [Abstract] [Full Text] [Related]
7. ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen. Karnicka K, Miecznikowski K, Kowalewska B, Skunik M, Opallo M, Rogalski J, Schuhmann W, Kulesza PJ. Anal Chem; 2008 Oct 01; 80(19):7643-8. PubMed ID: 18729478 [Abstract] [Full Text] [Related]
8. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes. Sadowska K, Stolarczyk K, Biernat JF, Roberts KP, Rogalski J, Bilewicz R. Bioelectrochemistry; 2010 Nov 01; 80(1):73-80. PubMed ID: 20609634 [Abstract] [Full Text] [Related]
9. Control of ZnO morphologies on carbon nanotube electrodes and electrocatalytic characteristics toward hydrazine. Han KN, Li CA, Bui MP, Pham XH, Seong GH. Chem Commun (Camb); 2011 Jan 21; 47(3):938-40. PubMed ID: 21076760 [Abstract] [Full Text] [Related]
10. Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Vaz-Dominguez C, Campuzano S, Rüdiger O, Pita M, Gorbacheva M, Shleev S, Fernandez VM, De Lacey AL. Biosens Bioelectron; 2008 Dec 01; 24(4):531-7. PubMed ID: 18585029 [Abstract] [Full Text] [Related]
11. Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes. Lalaoui N, Elouarzaki K, Le Goff A, Holzinger M, Cosnier S. Chem Commun (Camb); 2013 Oct 18; 49(81):9281-3. PubMed ID: 23994955 [Abstract] [Full Text] [Related]
13. Direct electron transfer to a metagenome-derived laccase fused to affinity tags near the electroactive copper site. Tsujimura S, Asahi M, Goda-Tsutsumi M, Shirai O, Kano K, Miyazaki K. Phys Chem Chem Phys; 2013 Dec 21; 15(47):20585-9. PubMed ID: 24185896 [Abstract] [Full Text] [Related]
14. Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. Mazloum-Ardakani M, Beitollahi H, Ganjipour B, Naeimi H, Nejati M. Bioelectrochemistry; 2009 Apr 21; 75(1):1-8. PubMed ID: 19195936 [Abstract] [Full Text] [Related]
15. Catalase-Modified Carbon Electrodes: Persuading Oxygen To Accept Four Electrons Rather Than Two. Sepunaru L, Laborda E, Compton RG. Chemistry; 2016 Apr 18; 22(17):5904-8. PubMed ID: 26934203 [Abstract] [Full Text] [Related]
16. Electrochemical catalysis and thermal stability characterization of laccase-carbon nanotubes-ionic liquid nanocomposite modified graphite electrode. Liu Y, Huang L, Dong S. Biosens Bioelectron; 2007 Aug 30; 23(1):35-41. PubMed ID: 17459687 [Abstract] [Full Text] [Related]
18. Investigation of biosensor signal bioamplification: comparison of direct electrochemistry phenomena of individual Laccase, and dual Laccase-Tyrosinase copper enzymes, at a Sonogel-Carbon electrode. ElKaoutit M, Naranjo-Rodriguez I, Temsamani KR, Domínguez M, Hidalgo-Hidalgo de Cisneros JL. Talanta; 2008 Jun 15; 75(5):1348-55. PubMed ID: 18585223 [Abstract] [Full Text] [Related]
19. Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials. Zhao F, Wu X, Wang M, Liu Y, Gao L, Dong S. Anal Chem; 2004 Sep 01; 76(17):4960-7. PubMed ID: 15373429 [Abstract] [Full Text] [Related]