These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
280 related items for PubMed ID: 21672225
1. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. Raman B, McKeown CK, Rodriguez M, Brown SD, Mielenz JR. BMC Microbiol; 2011 Jun 14; 11():134. PubMed ID: 21672225 [Abstract] [Full Text] [Related]
2. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum. Ortiz de Ora L, Muñoz-Gutiérrez I, Bayer EA, Shoham Y, Lamed R, Borovok I. Appl Environ Microbiol; 2017 Apr 15; 83(8):. PubMed ID: 28159788 [Abstract] [Full Text] [Related]
3. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR. PLoS One; 2009 Apr 15; 4(4):e5271. PubMed ID: 19384422 [Abstract] [Full Text] [Related]
4. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M. Bioresour Technol; 2018 Feb 15; 250():860-867. PubMed ID: 30001594 [Abstract] [Full Text] [Related]
5. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B, Biswas R, Rydzak T, Guss AM. Metab Eng; 2015 Nov 15; 32():49-54. PubMed ID: 26369438 [Abstract] [Full Text] [Related]
6. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues. Leitão VO, Noronha EF, Camargo BR, Hamann PRV, Steindorff AS, Quirino BF, de Sousa MV, Ulhoa CJ, Felix CR. J Ind Microbiol Biotechnol; 2017 Jun 15; 44(6):825-834. PubMed ID: 28181082 [Abstract] [Full Text] [Related]
8. LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313. Wilson CM, Klingeman DM, Schlachter C, Syed MH, Wu CW, Guss AM, Brown SD. Appl Environ Microbiol; 2017 Mar 01; 83(5):. PubMed ID: 28003194 [Abstract] [Full Text] [Related]
9. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Stevenson DM, Weimer PJ. Appl Environ Microbiol; 2005 Aug 01; 71(8):4672-8. PubMed ID: 16085862 [Abstract] [Full Text] [Related]
10. Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Riederer A, Takasuka TE, Makino S, Stevenson DM, Bukhman YV, Elsen NL, Fox BG. Appl Environ Microbiol; 2011 Feb 01; 77(4):1243-53. PubMed ID: 21169455 [Abstract] [Full Text] [Related]
11. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome. Hirano K, Nihei S, Hasegawa H, Haruki M, Hirano N. Appl Environ Microbiol; 2015 Jul 01; 81(14):4756-66. PubMed ID: 25956772 [Abstract] [Full Text] [Related]
12. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain. Linville JL, Rodriguez M, Brown SD, Mielenz JR, Cox CD. BMC Microbiol; 2014 Aug 16; 14():215. PubMed ID: 25128475 [Abstract] [Full Text] [Related]
13. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. Hyeon JE, Yu KO, Suh DJ, Suh YW, Lee SE, Lee J, Han SO. FEMS Microbiol Lett; 2010 Sep 01; 310(1):39-47. PubMed ID: 20637040 [Abstract] [Full Text] [Related]
14. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Kim S, Baek SH, Lee K, Hahn JS. Microb Cell Fact; 2013 Feb 05; 12():14. PubMed ID: 23383678 [Abstract] [Full Text] [Related]
15. Cellulose hydrolysis ability of a Clostridium thermocellum cellulosome containing small-size scaffolding protein CipA. Deng L, Mori Y, Sermsathanaswadi J, Apiwatanapiwat W, Kosugi A. J Biotechnol; 2015 Oct 20; 212():144-52. PubMed ID: 26302838 [Abstract] [Full Text] [Related]
16. Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. Zverlov VV, Klupp M, Krauss J, Schwarz WH. J Bacteriol; 2008 Jun 20; 190(12):4321-7. PubMed ID: 18408027 [Abstract] [Full Text] [Related]
17. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE. Bioresour Technol; 2013 Feb 20; 130():125-35. PubMed ID: 23306120 [Abstract] [Full Text] [Related]
18. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. Rydzak T, McQueen PD, Krokhin OV, Spicer V, Ezzati P, Dwivedi RC, Shamshurin D, Levin DB, Wilkins JA, Sparling R. BMC Microbiol; 2012 Sep 21; 12():214. PubMed ID: 22994686 [Abstract] [Full Text] [Related]
19. Cellulosomes localise on the surface of membrane vesicles from the cellulolytic bacterium Clostridium thermocellum. Ichikawa S, Ogawa S, Nishida A, Kobayashi Y, Kurosawa T, Karita S. FEMS Microbiol Lett; 2019 Jun 01; 366(12):. PubMed ID: 31260052 [Abstract] [Full Text] [Related]
20. Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol. Xu C, Qin Y, Li Y, Ji Y, Huang J, Song H, Xu J. Bioresour Technol; 2010 Dec 01; 101(24):9560-9. PubMed ID: 20702089 [Abstract] [Full Text] [Related] Page: [Next] [New Search]