These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
314 related items for PubMed ID: 21674119
41. Influence of ruthenium doping on UV- and visible-light photoelectrocatalytic color removal from dye solutions using a TiO2 nanotube array photoanode. García-Ramírez P, Ramírez-Morales E, Solis Cortazar JC, Sirés I, Silva-Martínez S. Chemosphere; 2021 Mar; 267():128925. PubMed ID: 33213874 [Abstract] [Full Text] [Related]
42. Tetrabromobisphenol A photoelectrocatalytic degradation using reduced graphene oxide and cerium dioxide comodified TiO2 nanotube arrays as electrode under visible light. Zhou Q, Xing A, Zhao D, Zhao K. Chemosphere; 2016 Dec; 165():268-276. PubMed ID: 27657819 [Abstract] [Full Text] [Related]
43. Fabrication of PbS nanoparticle-sensitized TiO₂ nanotube arrays and their photoelectrochemical properties. Kang Q, Liu S, Yang L, Cai Q, Grimes CA. ACS Appl Mater Interfaces; 2011 Mar; 3(3):746-9. PubMed ID: 21306125 [Abstract] [Full Text] [Related]
44. Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. Wender H, Feil AF, Diaz LB, Ribeiro CS, Machado GJ, Migowski P, Weibel DE, Dupont J, Teixeira SR. ACS Appl Mater Interfaces; 2011 Apr; 3(4):1359-65. PubMed ID: 21443251 [Abstract] [Full Text] [Related]
45. Design of a novel Cu₂O/TiO₂/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol. Wang Y, Zhang YN, Zhao G, Tian H, Shi H, Zhou T. ACS Appl Mater Interfaces; 2012 Aug; 4(8):3965-72. PubMed ID: 22780307 [Abstract] [Full Text] [Related]
46. Capability of novel ZnFe₂O₄ nanotube arrays for visible-light induced degradation of 4-chlorophenol. Li X, Hou Y, Zhao Q, Teng W, Hu X, Chen G. Chemosphere; 2011 Jan; 82(4):581-6. PubMed ID: 21040945 [Abstract] [Full Text] [Related]
47. Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Nahar MS, Hasegawa K, Kagaya S. Chemosphere; 2006 Dec; 65(11):1976-82. PubMed ID: 16949637 [Abstract] [Full Text] [Related]
48. Enhanced photoelectrocatalytic degradation of ammonia by in situ photoelectrogenerated active chlorine on TiO2 nanotube electrodes. Xiao S, Wan D, Zhang K, Qu H, Peng J. J Environ Sci (China); 2016 Dec; 50():103-108. PubMed ID: 28034419 [Abstract] [Full Text] [Related]
49. Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2 nanotubes for specific and sensitive detection chlorpyrifos. Wang P, Dai W, Ge L, Yan M, Ge S, Yu J. Analyst; 2013 Feb 21; 138(3):939-45. PubMed ID: 23232561 [Abstract] [Full Text] [Related]
50. Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO(2) under UV and visible-light irradiation. Wang S, Zhou S. J Hazard Mater; 2011 Jan 15; 185(1):77-85. PubMed ID: 20934250 [Abstract] [Full Text] [Related]
51. BiOI/TiO2 nanotube arrays, a unique flake-tube structured p-n junction with remarkable visible-light photoelectrocatalytic performance and stability. Liu J, Ruan L, Adeloju SB, Wu Y. Dalton Trans; 2014 Jan 28; 43(4):1706-15. PubMed ID: 24225559 [Abstract] [Full Text] [Related]
52. Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300°C. Wang D, Xiao L, Luo Q, Li X, An J, Duan Y. J Hazard Mater; 2011 Aug 15; 192(1):150-9. PubMed ID: 21616590 [Abstract] [Full Text] [Related]
53. Electrochemical fabrication and properties of highly ordered Fe-doped TiO2 nanotubes. Kyeremateng NA, Hornebecq V, Martinez H, Knauth P, Djenizian T. Chemphyschem; 2012 Nov 12; 13(16):3707-13. PubMed ID: 22930465 [Abstract] [Full Text] [Related]
54. A promising electrode material modified by Nb-doped TiO2 nanotubes for electrochemical degradation of AR 73. Xu L, Liang G, Yin M. Chemosphere; 2017 Apr 12; 173():425-434. PubMed ID: 28129621 [Abstract] [Full Text] [Related]
55. Pd(II)-mediated triad multilayers with zinc tetrapyridylporphyrin and pyridine-functionalized nano-TiO2 as linkers: assembly, characterization, and photocatalytic properties. Ren XB, Chen M, Qian DJ. Langmuir; 2012 May 22; 28(20):7711-9. PubMed ID: 22548275 [Abstract] [Full Text] [Related]
56. Carbon quantum dots-decorated TiO2/g-C3N4 film electrode as a photoanode with improved photoelectrocatalytic performance for 1,4-dioxane degradation. Su Y, Liu G, Zeng C, Lu Y, Luo H, Zhang R. Chemosphere; 2020 Jul 22; 251():126381. PubMed ID: 32443232 [Abstract] [Full Text] [Related]
57. Synergistic photoelectrochemical reduction of Cr(VI) and oxidation of organic pollutants by g-C3N4/TiO2-NTs electrodes. Zhang Y, Wang Q, Lu J, Wang Q, Cong Y. Chemosphere; 2016 Nov 22; 162():55-63. PubMed ID: 27479456 [Abstract] [Full Text] [Related]
58. A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode. Yan K, Wang R, Zhang J. Biosens Bioelectron; 2014 Mar 15; 53():301-4. PubMed ID: 24161564 [Abstract] [Full Text] [Related]
59. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation. Li J, Lv S, Liu Y, Bai J, Zhou B, Hu X. J Hazard Mater; 2013 Nov 15; 262():482-8. PubMed ID: 24076571 [Abstract] [Full Text] [Related]
60. Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Chen D, Zhang H, Li X, Li J. Anal Chem; 2010 Mar 15; 82(6):2253-61. PubMed ID: 20163104 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]