These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
641 related items for PubMed ID: 21680610
1. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration. Nguyen TP, Lee BT. J Biomater Appl; 2012 Sep; 27(3):311-21. PubMed ID: 21680610 [Abstract] [Full Text] [Related]
2. In situ gelable glycation-resistant hydrogels composed of gelatin and oxidized alginate. Zhang H, Liao H, Chen W. J Biomater Sci Polym Ed; 2010 Sep; 21(3):329-42. PubMed ID: 20178689 [Abstract] [Full Text] [Related]
3. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Boontheekul T, Kong HJ, Mooney DJ. Biomaterials; 2005 May; 26(15):2455-65. PubMed ID: 15585248 [Abstract] [Full Text] [Related]
4. A rapid, in situ gelable hydrogel composed of teleostean and alginate. Zhang H, Liao H, Chen W. J Biomater Sci Polym Ed; 2009 May; 20(13):1915-28. PubMed ID: 19793447 [Abstract] [Full Text] [Related]
5. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A. Biomaterials; 2005 Nov; 26(32):6335-42. PubMed ID: 15919113 [Abstract] [Full Text] [Related]
6. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Balakrishnan B, Jayakrishnan A. Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441 [Abstract] [Full Text] [Related]
9. Augmenting in vitro osteogenesis of a glycine-arginine-glycine-aspartic-conjugated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel composite and in vivo bone biogenesis through stem cell delivery. Linh NT, Paul K, Kim B, Lee BT. J Biomater Appl; 2016 Nov; 31(5):661-673. PubMed ID: 27604088 [Abstract] [Full Text] [Related]
10. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Biomaterials; 2004 Jul; 25(16):3211-22. PubMed ID: 14980416 [Abstract] [Full Text] [Related]
11. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications. Baniasadi H, Mashayekhan S, Fadaoddini S, Haghirsharifzamini Y. J Biomater Appl; 2016 Jul; 31(1):152-61. PubMed ID: 26916948 [Abstract] [Full Text] [Related]
12. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Balakrishnan B, Joshi N, Jayakrishnan A, Banerjee R. Acta Biomater; 2014 Aug; 10(8):3650-63. PubMed ID: 24811827 [Abstract] [Full Text] [Related]
13. Alginate-based hydrogels with improved adhesive properties for cell encapsulation. Sarker B, Rompf J, Silva R, Lang N, Detsch R, Kaschta J, Fabry B, Boccaccini AR. Int J Biol Macromol; 2015 Aug; 78():72-8. PubMed ID: 25847839 [Abstract] [Full Text] [Related]
17. Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources. Liao H, Zhang H, Chen W. J Mater Sci Mater Med; 2009 Jun; 20(6):1263-71. PubMed ID: 19184370 [Abstract] [Full Text] [Related]
18. Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers. Cho SH, Lim SM, Han DK, Yuk SH, Im GI, Lee JH. J Biomater Sci Polym Ed; 2009 Jun; 20(7-8):863-76. PubMed ID: 19454157 [Abstract] [Full Text] [Related]