These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 21682268

  • 1. Active site gating and substrate specificity of butyrylcholinesterase and acetylcholinesterase: insights from molecular dynamics simulations.
    Fang L, Pan Y, Muzyka JL, Zhan CG.
    J Phys Chem B; 2011 Jul 14; 115(27):8797-805. PubMed ID: 21682268
    [Abstract] [Full Text] [Related]

  • 2. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase.
    Kandasamy S, Loganathan C, Sakayanathan P, Karthikeyan S, Stephen AD, Marimuthu DK, Ravichandran S, Sivalingam V, Thayumanavan P.
    Int J Biol Macromol; 2021 Aug 31; 185():750-760. PubMed ID: 34216669
    [Abstract] [Full Text] [Related]

  • 3. Respective roles of the catalytic domains and C-terminal tail peptides in the oligomerization and secretory trafficking of human acetylcholinesterase and butyrylcholinesterase.
    Liang D, Blouet JP, Borrega F, Bon S, Massoulié J.
    FEBS J; 2009 Jan 31; 276(1):94-108. PubMed ID: 19019080
    [Abstract] [Full Text] [Related]

  • 4. In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases.
    Sakayanathan P, Loganathan C, Kandasamy S, Ramanna RV, Poomani K, Thayumanavan P.
    Int J Biol Macromol; 2019 Nov 01; 140():1147-1157. PubMed ID: 31442505
    [Abstract] [Full Text] [Related]

  • 5. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study.
    Rosenberry TL, Brazzolotto X, Macdonald IR, Wandhammer M, Trovaslet-Leroy M, Darvesh S, Nachon F.
    Molecules; 2017 Nov 29; 22(12):. PubMed ID: 29186056
    [Abstract] [Full Text] [Related]

  • 6. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases.
    Saxena A, Fedorko JM, Vinayaka CR, Medhekar R, Radić Z, Taylor P, Lockridge O, Doctor BP.
    Eur J Biochem; 2003 Nov 29; 270(22):4447-58. PubMed ID: 14622273
    [Abstract] [Full Text] [Related]

  • 7. Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase.
    Saxena A, Redman AM, Jiang X, Lockridge O, Doctor BP.
    Chem Biol Interact; 1999 May 14; 119-120():61-9. PubMed ID: 10421439
    [Abstract] [Full Text] [Related]

  • 8. Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the Medaka Oryzias latipes.
    Pezzementi L, Nachon F, Chatonnet A.
    PLoS One; 2011 Feb 25; 6(2):e17396. PubMed ID: 21364766
    [Abstract] [Full Text] [Related]

  • 9. Discovery of methoxy-naphthyl linked N-(1-benzylpiperidine) benzamide as a blood-brain permeable dual inhibitor of acetylcholinesterase and butyrylcholinesterase.
    Abdullaha M, Nuthakki VK, Bharate SB.
    Eur J Med Chem; 2020 Dec 01; 207():112761. PubMed ID: 32942070
    [Abstract] [Full Text] [Related]

  • 10. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase?
    Kaplan D, Ordentlich A, Barak D, Ariel N, Kronman C, Velan B, Shafferman A.
    Biochemistry; 2001 Jun 26; 40(25):7433-45. PubMed ID: 11412096
    [Abstract] [Full Text] [Related]

  • 11. Surface screening, molecular modeling and in vitro studies on the interactions of aflatoxin M1 and human enzymes acetyl- and butyrylcholinesterase.
    de Almeida JSFD, Cavalcante SFA, Dolezal R, Kuca K, Musilek K, Jun D, França TCC.
    Chem Biol Interact; 2019 Aug 01; 308():113-119. PubMed ID: 31100275
    [Abstract] [Full Text] [Related]

  • 12. [Theoretical conformational analysis in the determination of productive conformations of substrates for acetylcholinesterase and butyrylcholinesterase].
    Belinskaia DA, Shestakova NN.
    Bioorg Khim; 2005 Aug 01; 31(5):466-73. PubMed ID: 16245689
    [Abstract] [Full Text] [Related]

  • 13. Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry.
    Carletti E, Colletier JP, Schopfer LM, Santoni G, Masson P, Lockridge O, Nachon F, Weik M.
    Chem Res Toxicol; 2013 Feb 18; 26(2):280-9. PubMed ID: 23339663
    [Abstract] [Full Text] [Related]

  • 14. Productive substrate sorption in acetylcholinesterase and butyrylcholinesterase active sites according to theoretical conformational analysis.
    Belinskaya DA, Shestakova NN.
    Dokl Biochem Biophys; 2004 Feb 18; 396():146-50. PubMed ID: 15378912
    [No Abstract] [Full Text] [Related]

  • 15. Structural aspects of 4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase.
    Bosak A, Opsenica DM, Šinko G, Zlatar M, Kovarik Z.
    Chem Biol Interact; 2019 Aug 01; 308():101-109. PubMed ID: 31100281
    [Abstract] [Full Text] [Related]

  • 16. Reversible inhibition of acetylcholinesterase and butyrylcholinesterase by 4,4'-bipyridine and by a coumarin derivative.
    Simeon-Rudolf V, Kovarik Z, Radić Z, Reiner E.
    Chem Biol Interact; 1999 May 14; 119-120():119-28. PubMed ID: 10421445
    [Abstract] [Full Text] [Related]

  • 17. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies.
    Mughal EU, Sadiq A, Ashraf J, Zafar MN, Sumrra SH, Tariq R, Mumtaz A, Javid A, Khan BA, Ali A, Javed CO.
    Bioorg Chem; 2019 Oct 14; 91():103124. PubMed ID: 31319297
    [Abstract] [Full Text] [Related]

  • 18. Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy.
    Yang SH, Sun Q, Xiong H, Liu SY, Moosavi B, Yang WC, Yang GF.
    Chem Commun (Camb); 2017 Apr 04; 53(28):3952-3955. PubMed ID: 28322391
    [Abstract] [Full Text] [Related]

  • 19. Synthesis, structure-activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors.
    Mughal EU, Sadiq A, Murtaza S, Rafique H, Zafar MN, Riaz T, Khan BA, Hameed A, Khan KM.
    Bioorg Med Chem; 2017 Jan 01; 25(1):100-106. PubMed ID: 27780618
    [Abstract] [Full Text] [Related]

  • 20. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors.
    Alpan AS, Parlar S, Carlino L, Tarikogullari AH, Alptüzün V, Güneş HS.
    Bioorg Med Chem; 2013 Sep 01; 21(17):4928-37. PubMed ID: 23891231
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.