These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
506 related items for PubMed ID: 21682394
1. Reflection and transmission of plane waves from a fluid-porous piezoelectric solid interface. Vashishth AK, Gupta V. J Acoust Soc Am; 2011 Jun; 129(6):3690-701. PubMed ID: 21682394 [Abstract] [Full Text] [Related]
4. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining. Nennig B, Tahar MB, Perrey-Debain E. J Acoust Soc Am; 2011 Jul; 130(1):42-51. PubMed ID: 21786876 [Abstract] [Full Text] [Related]
5. On wavemodes at the interface of a fluid and a fluid-saturated poroelastic solid. van Dalen KN, Drijkoningen GG, Smeulders DM. J Acoust Soc Am; 2010 Apr; 127(4):2240-51. PubMed ID: 20370005 [Abstract] [Full Text] [Related]
7. Computational fluid dynamics simulation of sound propagation through a blade row. Zhao L, Qiao W, Ji L. J Acoust Soc Am; 2012 Oct; 132(4):2210-7. PubMed ID: 23039417 [Abstract] [Full Text] [Related]
8. Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating. George J, Ebenezer DD, Bhattacharyya SK. J Acoust Soc Am; 2010 Oct; 128(4):1712-20. PubMed ID: 20968344 [Abstract] [Full Text] [Related]
9. Surface waves on a half space with depth-dependent properties. Balogun O, Achenbach JD. J Acoust Soc Am; 2012 Sep; 132(3):1336-45. PubMed ID: 22978862 [Abstract] [Full Text] [Related]
10. Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid. Wang J, Dual J. J Acoust Soc Am; 2011 Jun; 129(6):3490-501. PubMed ID: 21682376 [Abstract] [Full Text] [Related]
11. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material. Gautier G, Kelders L, Groby JP, Dazel O, De Ryck L, Leclaire P. J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080 [Abstract] [Full Text] [Related]
12. A finite difference method for a coupled model of wave propagation in poroelastic materials. Zhang Y, Song L, Deffenbaugh M, Toksöz MN. J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735 [Abstract] [Full Text] [Related]
13. Fast asymptotic solutions for sound fields above and below a rigid porous ground. Li KM, Liu S. J Acoust Soc Am; 2011 Sep; 130(3):1103-14. PubMed ID: 21895053 [Abstract] [Full Text] [Related]
14. Vibroacoustic response sensitivity due to relative alignment of two anisotropic poro-elastic layers. Lind Nordgren E, Göransson P, Deü JF, Dazel O. J Acoust Soc Am; 2013 May; 133(5):EL426-30. PubMed ID: 23656104 [Abstract] [Full Text] [Related]
15. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels. Zhang B, Chen T, Zhao Y, Zhang W, Zhu J. J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873 [Abstract] [Full Text] [Related]
16. Absorption of oblique incidence sound by a finite micro-perforated panel absorber. Yang C, Cheng L, Pan J. J Acoust Soc Am; 2013 Jan; 133(1):201-9. PubMed ID: 23297895 [Abstract] [Full Text] [Related]
17. Influence of an oscillating circuit on the radiation of transient acoustic waves by an electroelastic cylinder. Babaev AE, Babaev AA, Yanchevskiy IV. J Acoust Soc Am; 2010 Apr; 127(4):2282-9. PubMed ID: 20370009 [Abstract] [Full Text] [Related]
18. A real-time plane-wave decomposition algorithm for characterizing perforated liners damping at multiple mode frequencies. Zhao D. J Acoust Soc Am; 2011 Mar; 129(3):1184-92. PubMed ID: 21428482 [Abstract] [Full Text] [Related]