These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 21683877

  • 1. Genetic analysis of cysteine-poor prolamin polypeptides reduced in the endosperm of the rice esp1 mutant.
    Ushijima T, Matsusaka H, Jikuya H, Ogawa M, Satoh H, Kumamaru T.
    Plant Sci; 2011 Aug; 181(2):125-31. PubMed ID: 21683877
    [Abstract] [Full Text] [Related]

  • 2. Eukaryotic peptide chain release factor 1 participates in translation termination of specific cysteine-poor prolamines in rice endosperm.
    Elakhdar A, Ushijima T, Fukuda M, Yamashiro N, Kawagoe Y, Kumamaru T.
    Plant Sci; 2019 Apr; 281():223-231. PubMed ID: 30824055
    [Abstract] [Full Text] [Related]

  • 3. Compensatory rebalancing of rice prolamins by production of recombinant prolamin/bioactive peptide fusion proteins within ER-derived protein bodies.
    Takaiwa F, Yang L, Wakasa Y, Ozawa K.
    Plant Cell Rep; 2018 Feb; 37(2):209-223. PubMed ID: 29075848
    [Abstract] [Full Text] [Related]

  • 4. Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice.
    Pham HA, Cho K, Tran AD, Chandra D, So J, Nguyen HTT, Sang H, Lee JY, Han O.
    Int J Mol Sci; 2024 Jun 14; 25(12):. PubMed ID: 38928285
    [Abstract] [Full Text] [Related]

  • 5. Formation mechanism of the internal structure of type I protein bodies in rice endosperm: relationship between the localization of prolamin species and the expression of individual genes.
    Saito Y, Shigemitsu T, Yamasaki R, Sasou A, Goto F, Kishida K, Kuroda M, Tanaka K, Morita S, Satoh S, Masumura T.
    Plant J; 2012 Jun 14; 70(6):1043-55. PubMed ID: 22348505
    [Abstract] [Full Text] [Related]

  • 6. A green fluorescent protein fused to rice prolamin forms protein body-like structures in transgenic rice.
    Saito Y, Kishida K, Takata K, Takahashi H, Shimada T, Tanaka K, Morita S, Satoh S, Masumura T.
    J Exp Bot; 2009 Jun 14; 60(2):615-27. PubMed ID: 19129168
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Identification of the region of rice 13 kDa prolamin essential for the formation of ER-derived protein bodies using a heterologous expression system.
    Masumura T, Shigemitsu T, Morita S, Satoh S.
    Biosci Biotechnol Biochem; 2015 Jun 14; 79(4):566-73. PubMed ID: 25522807
    [Abstract] [Full Text] [Related]

  • 10. OsERdj7 is an ER-resident J-protein involved in ER quality control in rice endosperm.
    Ohta M, Takaiwa F.
    J Plant Physiol; 2020 Feb 14; 245():153109. PubMed ID: 31896032
    [Abstract] [Full Text] [Related]

  • 11. Accumulation of rice prolamin-GFP fusion proteins induces ER-derived protein bodies in transgenic rice calli.
    Shigemitsu T, Masumura T, Morita S, Satoh S.
    Plant Cell Rep; 2013 Mar 14; 32(3):389-99. PubMed ID: 23192363
    [Abstract] [Full Text] [Related]

  • 12. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase.
    Takemoto Y, Coughlan SJ, Okita TW, Satoh H, Ogawa M, Kumamaru T.
    Plant Physiol; 2002 Apr 14; 128(4):1212-22. PubMed ID: 11950970
    [Abstract] [Full Text] [Related]

  • 13. Involvement of a rice mutation in storage protein biogenesis in endosperm and its genomic location.
    Tian H, Li Y, Guo Y, Qu Y, Zhang X, Zhao X, Chang X, Tian B, Wang G, Yuan X.
    Planta; 2024 Jun 05; 260(1):19. PubMed ID: 38839605
    [Abstract] [Full Text] [Related]

  • 14. Influence on Accumulation Levels and Subcellular Localization of Prolamins by Fusion with the Functional Peptide in Transgenic Rice Seeds.
    Takaiwa F.
    Mol Biotechnol; 2023 Nov 05; 65(11):1869-1886. PubMed ID: 36856922
    [Abstract] [Full Text] [Related]

  • 15. A role for the cysteine-rich 10 kDa prolamin in protein body I formation in rice.
    Nagamine A, Matsusaka H, Ushijima T, Kawagoe Y, Ogawa M, Okita TW, Kumamaru T.
    Plant Cell Physiol; 2011 Jun 05; 52(6):1003-16. PubMed ID: 21521743
    [Abstract] [Full Text] [Related]

  • 16. Detection of specific DNA from crude extracts of rice seed grains using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
    Kajiwara H.
    Anal Biochem; 2011 Apr 01; 411(1):152-4. PubMed ID: 21156152
    [Abstract] [Full Text] [Related]

  • 17. Perfusion chromatography purification of a 15 kDa rice prolamin.
    Losso JN, Bansode RR, Bawadi HA.
    J Agric Food Chem; 2003 Nov 19; 51(24):7122-6. PubMed ID: 14611182
    [Abstract] [Full Text] [Related]

  • 18. Reduction of 13 kD prolamins increases recombinant protein yield and recovery rate in rice endosperm.
    Kawakatsu T, Takaiwa F.
    Plant Signal Behav; 2012 Nov 19; 7(11):1402-3. PubMed ID: 22960759
    [Abstract] [Full Text] [Related]

  • 19. Complementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation.
    Lin Z, Wang Z, Zhang X, Liu Z, Li G, Wang S, Ding Y.
    Plant Cell Physiol; 2017 Mar 01; 58(3):560-573. PubMed ID: 28158863
    [Abstract] [Full Text] [Related]

  • 20. Effects of reduced prolamin on seed storage protein composition and the nutritional quality of rice.
    Kim HJ, Lee JY, Yoon UH, Lim SH, Kim YM.
    Int J Mol Sci; 2013 Aug 19; 14(8):17073-84. PubMed ID: 23965973
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.