These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
298 related items for PubMed ID: 21689790
1. Aggregation and structural changes of α(S1)-, β- and κ-caseins induced by homocysteinylation. Stroylova YY, Zimny J, Yousefi R, Chobert JM, Jakubowski H, Muronetz VI, Haertlé T. Biochim Biophys Acta; 2011 Oct; 1814(10):1234-45. PubMed ID: 21689790 [Abstract] [Full Text] [Related]
2. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process. Leonil J, Henry G, Jouanneau D, Delage MM, Forge V, Putaux JL. J Mol Biol; 2008 Sep 19; 381(5):1267-80. PubMed ID: 18616951 [Abstract] [Full Text] [Related]
3. N-homocysteinylation of ovine prion protein induces amyloid-like transformation. Stroylova YY, Chobert JM, Muronetz VI, Jakubowski H, Haertlé T. Arch Biochem Biophys; 2012 Oct 01; 526(1):29-37. PubMed ID: 22782079 [Abstract] [Full Text] [Related]
4. The dissociated form of kappa-casein is the precursor to its amyloid fibril formation. Ecroyd H, Thorn DC, Liu Y, Carver JA. Biochem J; 2010 Jul 15; 429(2):251-60. PubMed ID: 20441567 [Abstract] [Full Text] [Related]
5. Protein N-homocysteinylation induces the formation of toxic amyloid-like protofibrils. Paoli P, Sbrana F, Tiribilli B, Caselli A, Pantera B, Cirri P, De Donatis A, Formigli L, Nosi D, Manao G, Camici G, Ramponi G. J Mol Biol; 2010 Jul 23; 400(4):889-907. PubMed ID: 20510245 [Abstract] [Full Text] [Related]
6. Effect of homocysteinylation on structure, chaperone activity and fibrillation propensity of lens alpha-crystallin. Yousefi R, Khazaei S, Moosavi-Movahedi AA. Protein Pept Lett; 2013 Aug 23; 20(8):932-41. PubMed ID: 23458667 [Abstract] [Full Text] [Related]
7. Aggregation behavior of bovine κ- and β-casein studied with small angle neutron scattering, light scattering, and cryogenic transmission electron microscopy. Ossowski S, Jackson A, Obiols-Rabasa M, Holt C, Lenton S, Porcar L, Paulsson M, Nylander T. Langmuir; 2012 Sep 25; 28(38):13577-89. PubMed ID: 22924693 [Abstract] [Full Text] [Related]
8. Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alphaS- and beta-casein. Thorn DC, Meehan S, Sunde M, Rekas A, Gras SL, MacPhee CE, Dobson CM, Wilson MR, Carver JA. Biochemistry; 2005 Dec 27; 44(51):17027-36. PubMed ID: 16363816 [Abstract] [Full Text] [Related]
9. Environmental influences on bovine kappa-casein: reduction and conversion to fibrillar (amyloid) structures. Farrell HM, Cooke PH, Wickham ED, Piotrowski EG, Hoagland PD. J Protein Chem; 2003 Apr 27; 22(3):259-73. PubMed ID: 12962326 [Abstract] [Full Text] [Related]
10. Amyloid fibril formation by bovine milk alpha s2-casein occurs under physiological conditions yet is prevented by its natural counterpart, alpha s1-casein. Thorn DC, Ecroyd H, Sunde M, Poon S, Carver JA. Biochemistry; 2008 Mar 25; 47(12):3926-36. PubMed ID: 18302322 [Abstract] [Full Text] [Related]
11. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. Jakubowski H. FASEB J; 1999 Dec 25; 13(15):2277-83. PubMed ID: 10593875 [Abstract] [Full Text] [Related]
12. Aggregation and fibrillation of eye lens crystallins by homocysteinylation; implication in the eye pathological disorders. Khazaei S, Yousefi R, Alavian-Mehr MM. Protein J; 2012 Dec 25; 31(8):717-27. PubMed ID: 23070797 [Abstract] [Full Text] [Related]
13. Modification of erythropoietin structure by N-homocysteinylation affects its antiapoptotic and proliferative functions. Schiappacasse A, Maltaneri RE, Chamorro ME, Nesse AB, Wetzler DE, Vittori DC. FEBS J; 2018 Oct 25; 285(20):3801-3814. PubMed ID: 30103295 [Abstract] [Full Text] [Related]
14. Existence of molten globule state in homocysteine-induced protein covalent modifications. Kumar T, Sharma GS, Singh LR. PLoS One; 2014 Oct 25; 9(11):e113566. PubMed ID: 25405350 [Abstract] [Full Text] [Related]
15. Interaction with Al and Zn induces structure formation and aggregation in natively unfolded caseins. Chakraborty A, Basak S. J Photochem Photobiol B; 2008 Oct 16; 93(1):36-43. PubMed ID: 18700180 [Abstract] [Full Text] [Related]
16. Effect of the A and B variants of both alpha s1- and kappa-casein on bovine casein micelle solvation and kappa-casein content. Anema SG, Creamer LK. J Dairy Res; 1993 Nov 16; 60(4):505-16. PubMed ID: 8294607 [Abstract] [Full Text] [Related]
17. Dephosphorylation of alpha(s)- and beta-caseins and its effect on chaperone activity: a structural and functional investigation. Koudelka T, Hoffmann P, Carver JA. J Agric Food Chem; 2009 Jul 08; 57(13):5956-64. PubMed ID: 19527030 [Abstract] [Full Text] [Related]
18. pH-induced structural transitions of caseins. Chakraborty A, Basak S. J Photochem Photobiol B; 2007 Jun 26; 87(3):191-9. PubMed ID: 17537643 [Abstract] [Full Text] [Related]
19. The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein. Liu J, Dehle FC, Liu Y, Bahraminejad E, Ecroyd H, Thorn DC, Carver JA. J Agric Food Chem; 2016 Feb 17; 64(6):1335-43. PubMed ID: 26807595 [Abstract] [Full Text] [Related]
20. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties. Pan K, Zhong Q. Soft Matter; 2015 Aug 07; 11(29):5898-904. PubMed ID: 26112282 [Abstract] [Full Text] [Related] Page: [Next] [New Search]