These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


400 related items for PubMed ID: 21691347

  • 1. Enhancement of localized surface plasmon resonance detection by incorporating metal-dielectric double-layered subwavelength gratings.
    Jang SM, Kim D, Choi SH, Byun KM, Kim SJ.
    Appl Opt; 2011 Jun 20; 50(18):2846-54. PubMed ID: 21691347
    [Abstract] [Full Text] [Related]

  • 2. Plasmonic metal-dielectric-metal stack structure with subwavelength metallic gratings for improving sensor sensitivity and signal quality.
    El-Gohary SH, Choi JM, Kim NH, Byun KM.
    Appl Opt; 2014 Apr 01; 53(10):2152-7. PubMed ID: 24787174
    [Abstract] [Full Text] [Related]

  • 3. Numerical study on an application of subwavelength dielectric gratings for high-sensitivity plasmonic detection.
    Jung WK, Kim NH, Byun KM.
    Appl Opt; 2012 Jul 10; 51(20):4722-9. PubMed ID: 22781248
    [Abstract] [Full Text] [Related]

  • 4. Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings.
    Kim K, Kim DJ, Moon S, Kim D, Byun KM.
    Nanotechnology; 2009 Aug 05; 20(31):315501. PubMed ID: 19597249
    [Abstract] [Full Text] [Related]

  • 5. Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface.
    Jung J, Na K, Lee J, Kim KW, Hyun J.
    Anal Chim Acta; 2009 Sep 28; 651(1):91-7. PubMed ID: 19733741
    [Abstract] [Full Text] [Related]

  • 6. An interference localized surface plasmon resonance biosensor based on the photonic structure of Au nanoparticles and SiO2/Si multilayers.
    Hiep HM, Yoshikawa H, Saito M, Tamiya E.
    ACS Nano; 2009 Feb 24; 3(2):446-52. PubMed ID: 19236084
    [Abstract] [Full Text] [Related]

  • 7. Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization.
    Moon S, Kim Y, Oh Y, Lee H, Kim HC, Lee K, Kim D.
    Biosens Bioelectron; 2012 Feb 15; 32(1):141-7. PubMed ID: 22197101
    [Abstract] [Full Text] [Related]

  • 8. Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing.
    Wark AW, Lee HJ, Qavi AJ, Corn RM.
    Anal Chem; 2007 Sep 01; 79(17):6697-701. PubMed ID: 17676761
    [Abstract] [Full Text] [Related]

  • 9. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS, El-Sayed MA.
    J Phys Chem B; 2006 Oct 05; 110(39):19220-5. PubMed ID: 17004772
    [Abstract] [Full Text] [Related]

  • 10. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM, Lazarides AA.
    J Phys Chem B; 2005 Nov 24; 109(46):21556-65. PubMed ID: 16853799
    [Abstract] [Full Text] [Related]

  • 11. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D, Xu X, Liu X.
    J Chem Phys; 2008 Aug 21; 129(7):074711. PubMed ID: 19044796
    [Abstract] [Full Text] [Related]

  • 12. Label-free cell-based assay using localized surface plasmon resonance biosensor.
    Endo T, Yamamura S, Kerman K, Tamiya E.
    Anal Chim Acta; 2008 May 05; 614(2):182-9. PubMed ID: 18420049
    [Abstract] [Full Text] [Related]

  • 13. Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions.
    Zhu S, Chen TP, Cen ZH, Goh ES, Yu SF, Liu YC, Liu Y.
    Opt Express; 2010 Oct 11; 18(21):21926-31. PubMed ID: 20941092
    [Abstract] [Full Text] [Related]

  • 14. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label.
    Kajiura M, Nakanishi T, Iida H, Takada H, Osaka T.
    J Colloid Interface Sci; 2009 Jul 01; 335(1):140-5. PubMed ID: 19395015
    [Abstract] [Full Text] [Related]

  • 15. Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy.
    Qi ZM, Xia S, Zou H.
    Nanotechnology; 2009 Jun 24; 20(25):255702. PubMed ID: 19491460
    [Abstract] [Full Text] [Related]

  • 16. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model.
    Chu Y, Wang D, Zhu W, Crozier KB.
    Opt Express; 2011 Aug 01; 19(16):14919-28. PubMed ID: 21934853
    [Abstract] [Full Text] [Related]

  • 17. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA.
    Acc Chem Res; 2008 Dec 01; 41(12):1578-86. PubMed ID: 18447366
    [Abstract] [Full Text] [Related]

  • 18. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C, Bonroy K, Reekmans G, Laureyn W, Verhaegen K, De Vlaminck I, Lagae L, Borghs G.
    Biomed Microdevices; 2009 Aug 01; 11(4):893-901. PubMed ID: 19353272
    [Abstract] [Full Text] [Related]

  • 19. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X, Tamada K, Baba A, Knoll W, Hara M.
    J Phys Chem B; 2006 Aug 17; 110(32):15755-62. PubMed ID: 16898722
    [Abstract] [Full Text] [Related]

  • 20. Enhancement of field-analyte interaction at metallic nanogap arrays for sensitive localized surface plasmon resonance detection.
    Awang RA, El-Gohary SH, Kim NH, Byun KM.
    Appl Opt; 2012 Nov 01; 51(31):7437-42. PubMed ID: 23128689
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.