These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
149 related items for PubMed ID: 21696459
1. Hsp31 of Escherichia coli K-12 is glyoxalase III. Subedi KP, Choi D, Kim I, Min B, Park C. Mol Microbiol; 2011 Aug; 81(4):926-36. PubMed ID: 21696459 [Abstract] [Full Text] [Related]
2. Regulation of Escherichia coli hchA, a stress-inducible gene encoding molecular chaperone Hsp31. Mujacic M, Baneyx F. Mol Microbiol; 2006 Jun; 60(6):1576-89. PubMed ID: 16796689 [Abstract] [Full Text] [Related]
3. Peptidase activity of the Escherichia coli Hsp31 chaperone. Malki A, Caldas T, Abdallah J, Kern R, Eckey V, Kim SJ, Cha SS, Mori H, Richarme G. J Biol Chem; 2005 Apr 15; 280(15):14420-6. PubMed ID: 15550391 [Abstract] [Full Text] [Related]
4. Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe stress conditions. Mujacic M, Bader MW, Baneyx F. Mol Microbiol; 2004 Feb 15; 51(3):849-59. PubMed ID: 14731284 [Abstract] [Full Text] [Related]
5. Chaperone Hsp31 contributes to acid resistance in stationary-phase Escherichia coli. Mujacic M, Baneyx F. Appl Environ Microbiol; 2007 Feb 15; 73(3):1014-8. PubMed ID: 17158627 [Abstract] [Full Text] [Related]
6. Structural alteration of Escherichia coli Hsp31 by thermal unfolding increases chaperone activity. Choi D, Ryu KS, Park C. Biochim Biophys Acta; 2013 Feb 15; 1834(2):621-8. PubMed ID: 23202248 [Abstract] [Full Text] [Related]
7. The DJ-1 superfamily member Hsp31 repairs proteins from glycation by methylglyoxal and glyoxal. Mihoub M, Abdallah J, Gontero B, Dairou J, Richarme G. Biochem Biophys Res Commun; 2015 Aug 07; 463(4):1305-10. PubMed ID: 26102038 [Abstract] [Full Text] [Related]
8. A new native EcHsp31 structure suggests a key role of structural flexibility for chaperone function. Quigley PM, Korotkov K, Baneyx F, Hol WG. Protein Sci; 2004 Jan 07; 13(1):269-77. PubMed ID: 14691241 [Abstract] [Full Text] [Related]
9. Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Misra K, Banerjee AB, Ray S, Ray M. Biochem J; 1995 Feb 01; 305 ( Pt 3)(Pt 3):999-1003. PubMed ID: 7848303 [Abstract] [Full Text] [Related]
10. Structural and functional studies of SAV0551 from Staphylococcus aureus as a chaperone and glyoxalase III. Kim HJ, Lee KY, Kwon AR, Lee BJ. Biosci Rep; 2017 Dec 22; 37(6):. PubMed ID: 29046369 [Abstract] [Full Text] [Related]
11. Zinc-mediated Reversible Multimerization of Hsp31 Enhances the Activity of Holding Chaperone. Kim J, Choi D, Cha SY, Oh YM, Hwang E, Park C, Ryu KS. J Mol Biol; 2018 Jun 08; 430(12):1760-1772. PubMed ID: 29709570 [Abstract] [Full Text] [Related]
12. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. Hasim S, Hussin NA, Alomar F, Bidasee KR, Nickerson KW, Wilson MA. J Biol Chem; 2014 Jan 17; 289(3):1662-74. PubMed ID: 24302734 [Abstract] [Full Text] [Related]
13. Gamma-glutamyl-gamma-aminobutyrate hydrolase in the putrescine utilization pathway of Escherichia coli K-12. Kurihara S, Oda S, Kumagai H, Suzuki H. FEMS Microbiol Lett; 2006 Mar 17; 256(2):318-23. PubMed ID: 16499623 [Abstract] [Full Text] [Related]
14. Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants. Li C, Montgomery MG, Mohammed F, Li JJ, Wood SP, Bugg TD. J Mol Biol; 2005 Feb 11; 346(1):241-51. PubMed ID: 15663941 [Abstract] [Full Text] [Related]
15. Thermoregulation of Escherichia coli hchA transcript stability. Rasouly A, Shenhar Y, Ron EZ. J Bacteriol; 2007 Aug 11; 189(15):5779-81. PubMed ID: 17526696 [Abstract] [Full Text] [Related]
16. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C, Li JJ, Montgomery MG, Wood SP, Bugg TD. Biochemistry; 2006 Oct 17; 45(41):12470-9. PubMed ID: 17029402 [Abstract] [Full Text] [Related]
17. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR, Chen YW, Dekker EE. Arch Biochem Biophys; 1998 Oct 15; 358(2):211-21. PubMed ID: 9784233 [Abstract] [Full Text] [Related]
18. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H, Vath GM, Gleason KJ, Hanna PE, Wagner CR. Biochemistry; 2004 Jun 29; 43(25):8234-46. PubMed ID: 15209520 [Abstract] [Full Text] [Related]
19. Backbone resonance assignments of the Escherichia coli 62 kDa protein, Hsp31. Kim J, Choi D, Park C, Ryu KS. Biomol NMR Assign; 2017 Oct 29; 11(2):159-163. PubMed ID: 28258548 [Abstract] [Full Text] [Related]
20. A two-base mechanism for Escherichia coli ADP-L-glycero-D-manno-heptose 6-epimerase. Morrison JP, Tanner ME. Biochemistry; 2007 Mar 27; 46(12):3916-24. PubMed ID: 17316025 [Abstract] [Full Text] [Related] Page: [Next] [New Search]