These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
189 related items for PubMed ID: 21700444
1. Bi-cell surface plasmon resonance detection of aptamer mediated thrombin capture in serum. Mani RJ, Dye RG, Snider TA, Wang S, Clinkenbeard KD. Biosens Bioelectron; 2011 Aug 15; 26(12):4832-6. PubMed ID: 21700444 [Abstract] [Full Text] [Related]
2. A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance. Polonschii C, David S, Tombelli S, Mascini M, Gheorghiu M. Talanta; 2010 Mar 15; 80(5):2157-64. PubMed ID: 20152466 [Abstract] [Full Text] [Related]
3. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. Tang Q, Su X, Loh KP. J Colloid Interface Sci; 2007 Nov 01; 315(1):99-106. PubMed ID: 17689549 [Abstract] [Full Text] [Related]
5. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Wang Y, Bao L, Liu Z, Pang DW. Anal Chem; 2011 Nov 01; 83(21):8130-7. PubMed ID: 21923110 [Abstract] [Full Text] [Related]
6. Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene. Wang L, Zhu C, Han L, Jin L, Zhou M, Dong S. Chem Commun (Camb); 2011 Jul 21; 47(27):7794-6. PubMed ID: 21633745 [Abstract] [Full Text] [Related]
11. Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays. Zhou WJ, Halpern AR, Seefeld TH, Corn RM. Anal Chem; 2012 Jan 03; 84(1):440-5. PubMed ID: 22126812 [Abstract] [Full Text] [Related]
12. Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation. Wang L, Li L, Xu Y, Cheng G, He P, Fang Y. Talanta; 2009 Aug 15; 79(3):557-61. PubMed ID: 19576412 [Abstract] [Full Text] [Related]
14. Real time monitoring of thrombin interactions with its aptamers: insights into the sandwich complex formation. Daniel C, Mélaïne F, Roupioz Y, Livache T, Buhot A. Biosens Bioelectron; 2013 Feb 15; 40(1):186-92. PubMed ID: 22863116 [Abstract] [Full Text] [Related]
15. High-sensitive determination of human alpha-thrombin by its 29-mer aptamer in affinity probe capillary electrophoresis. Li Y, Guo L, Zhang F, Zhang Z, Tang J, Xie J. Electrophoresis; 2008 Jun 15; 29(12):2570-7. PubMed ID: 18481835 [Abstract] [Full Text] [Related]
16. In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Shevchenko Y, Francis TJ, Blair DA, Walsh R, DeRosa MC, Albert J. Anal Chem; 2011 Sep 15; 83(18):7027-34. PubMed ID: 21815621 [Abstract] [Full Text] [Related]
17. A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Zhang J, Chen P, Wu X, Chen J, Xu L, Chen G, Fu F. Biosens Bioelectron; 2011 Jan 15; 26(5):2645-50. PubMed ID: 21146976 [Abstract] [Full Text] [Related]
18. Real-time apta-PCR for 20 000-fold improvement in detection limit. Pinto A, Bermudo Redondo MC, Ozalp VC, O'Sullivan CK. Mol Biosyst; 2009 May 15; 5(5):548-53. PubMed ID: 19381369 [Abstract] [Full Text] [Related]
19. Ultrasensitive detection of protein using an aptamer-based exonuclease protection assay. Wang XL, Li F, Su YH, Sun X, Li XB, Schluesener HJ, Tang F, Xu SQ. Anal Chem; 2004 Oct 01; 76(19):5605-10. PubMed ID: 15456277 [Abstract] [Full Text] [Related]
20. Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Du Y, Li B, Wei H, Wang Y, Wang E. Anal Chem; 2008 Jul 01; 80(13):5110-7. PubMed ID: 18522435 [Abstract] [Full Text] [Related] Page: [Next] [New Search]