These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
189 related items for PubMed ID: 21703661
1. Effects of dissolution kinetics on bioaccessible arsenic from tailings and soils. Meunier L, Koch I, Reimer KJ. Chemosphere; 2011 Sep; 84(10):1378-85. PubMed ID: 21703661 [Abstract] [Full Text] [Related]
5. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E, Zagury GJ. Sci Total Environ; 2009 Apr 01; 407(8):2576-85. PubMed ID: 19211134 [Abstract] [Full Text] [Related]
6. Assessment of oral bioaccessibility of arsenic in playground soil in Madrid (Spain): a three-method comparison and implications for risk assessment. Mingot J, De Miguel E, Chacón E. Chemosphere; 2011 Sep 01; 84(10):1386-91. PubMed ID: 21601908 [Abstract] [Full Text] [Related]
10. Effects of organic matter and ageing on the bioaccessibility of arsenic. Meunier L, Koch I, Reimer KJ. Environ Pollut; 2011 Oct 01; 159(10):2530-6. PubMed ID: 21782300 [Abstract] [Full Text] [Related]
11. Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the simulator of the human intestinal microbial ecosystem. Laird BD, Van de Wiele TR, Corriveau MC, Jamieson HE, Parsons MB, Verstraete W, Siciliano SD. Environ Sci Technol; 2007 Aug 01; 41(15):5542-7. PubMed ID: 17822130 [Abstract] [Full Text] [Related]
12. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T. Chemosphere; 2011 May 01; 83(7):925-32. PubMed ID: 21420713 [Abstract] [Full Text] [Related]
13. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study. Datta R, Sarkar D, Sharma S, Sand K. Sci Total Environ; 2006 Dec 15; 372(1):39-48. PubMed ID: 16973204 [Abstract] [Full Text] [Related]
14. Linking selective chemical extraction of iron oxyhydroxides to arsenic bioaccessibility in soil. Palumbo-Roe B, Wragg J, Cave M. Environ Pollut; 2015 Dec 15; 207():256-65. PubMed ID: 26412265 [Abstract] [Full Text] [Related]
15. Arsenic speciation, distribution, and bioaccessibility in shrews and their food. Moriarty MM, Koch I, Reimer KJ. Arch Environ Contam Toxicol; 2012 Apr 15; 62(3):529-38. PubMed ID: 21986782 [Abstract] [Full Text] [Related]
16. Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils. Tang XY, Cui YS, Duan J, Tang L. J Hazard Mater; 2008 Dec 15; 160(1):29-36. PubMed ID: 18395339 [Abstract] [Full Text] [Related]
17. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Sarkar D, Makris KC, Parra-Noonan MT, Datta R. Environ Int; 2007 Feb 15; 33(2):164-9. PubMed ID: 17034861 [Abstract] [Full Text] [Related]
18. In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials. Bruce S, Noller B, Matanitobua V, Ng J. J Toxicol Environ Health A; 2007 Oct 15; 70(19):1700-11. PubMed ID: 17763089 [Abstract] [Full Text] [Related]
19. Effect of aging on bioaccessibility of arsenic and lead in soils. Liang S, Guan DX, Li J, Zhou CY, Luo J, Ma LQ. Chemosphere; 2016 May 15; 151():94-100. PubMed ID: 26930247 [Abstract] [Full Text] [Related]
20. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings. Fernández P, Sommer I, Cram S, Rosas I, Gutiérrez M. Sci Total Environ; 2005 Sep 15; 348(1-3):231-43. PubMed ID: 16162327 [Abstract] [Full Text] [Related] Page: [Next] [New Search]