These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
172 related items for PubMed ID: 2170383
1. Hydroxyl radical is not a product of the reaction of xanthine oxidase and xanthine. The confounding problem of adventitious iron bound to xanthine oxidase. Britigan BE, Pou S, Rosen GM, Lilleg DM, Buettner GR. J Biol Chem; 1990 Oct 15; 265(29):17533-8. PubMed ID: 2170383 [Abstract] [Full Text] [Related]
2. Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase. Lloyd RV, Mason RP. J Biol Chem; 1990 Oct 05; 265(28):16733-6. PubMed ID: 2170352 [Abstract] [Full Text] [Related]
3. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin. Bannister JV, Bannister WH, Hill HA, Thornalley PJ. Biochim Biophys Acta; 1982 Mar 15; 715(1):116-20. PubMed ID: 6280774 [Abstract] [Full Text] [Related]
4. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. Kuppusamy P, Zweier JL. J Biol Chem; 1989 Jun 15; 264(17):9880-4. PubMed ID: 2542334 [Abstract] [Full Text] [Related]
5. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol. Cederbaum AI, Qureshi A, Cohen G. Biochem Pharmacol; 1983 Dec 01; 32(23):3517-24. PubMed ID: 6316986 [Abstract] [Full Text] [Related]
6. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase. Winston GW, Feierman DE, Cederbaum AI. Arch Biochem Biophys; 1984 Jul 01; 232(1):378-90. PubMed ID: 6331321 [Abstract] [Full Text] [Related]
7. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate. Egan TJ, Barthakur SR, Aisen P. J Inorg Biochem; 1992 Dec 01; 48(4):241-9. PubMed ID: 1336036 [Abstract] [Full Text] [Related]
8. Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. Mao GD, Thomas PD, Lopaschuk GD, Poznansky MJ. J Biol Chem; 1993 Jan 05; 268(1):416-20. PubMed ID: 8380162 [Abstract] [Full Text] [Related]
9. Superoxide dismutase-like activities of copper(II) complexes tested in serum. Huber KR, Sridhar R, Griffith EH, Amma EL, Roberts J. Biochim Biophys Acta; 1987 Sep 24; 915(2):267-76. PubMed ID: 2820500 [Abstract] [Full Text] [Related]
10. Spin-trapping and human neutrophils. Limits of detection of hydroxyl radical. Pou S, Cohen MS, Britigan BE, Rosen GM. J Biol Chem; 1989 Jul 25; 264(21):12299-302. PubMed ID: 2545706 [Abstract] [Full Text] [Related]
11. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine. Ross D, Cotgreave I, Moldéus P. Biochim Biophys Acta; 1985 Sep 06; 841(3):278-82. PubMed ID: 2992602 [Abstract] [Full Text] [Related]
12. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence. Winterbourn CC, Sutton HC. Arch Biochem Biophys; 1984 Nov 15; 235(1):116-26. PubMed ID: 6093705 [Abstract] [Full Text] [Related]
13. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical. Britigan BE, Roeder TL, Buettner GR. Biochim Biophys Acta; 1991 Oct 31; 1075(3):213-22. PubMed ID: 1659450 [Abstract] [Full Text] [Related]
14. Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst. Coffman TJ, Cox CD, Edeker BL, Britigan BE. J Clin Invest; 1990 Oct 31; 86(4):1030-7. PubMed ID: 2170442 [Abstract] [Full Text] [Related]
16. Self-limiting enhancement by nitric oxide of oxygen free radical-induced endothelial cell injury: evidence against the dual action of NO as hydroxyl radical donor/scavenger. Az-ma T, Fujii K, Yuge O. Br J Pharmacol; 1996 Oct 31; 119(3):455-62. PubMed ID: 8894164 [Abstract] [Full Text] [Related]
17. Bleomycin-iron damage to DNA with formation of 8-hydroxydeoxyguanosine and base propenals. Indications that xanthine oxidase generates superoxide from DNA degradation products. Gutteridge JM, West M, Eneff K, Floyd RA. Free Radic Res Commun; 1990 Oct 31; 10(3):159-65. PubMed ID: 1697821 [Abstract] [Full Text] [Related]
18. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma. Minetti M, Forte T, Soriani M, Quaresima V, Menditto A, Ferrari M. Biochem J; 1992 Mar 01; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330 [Abstract] [Full Text] [Related]
19. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical. Kvietys PR, Inauen W, Bacon BR, Grisham MB. Am J Physiol; 1989 Nov 01; 257(5 Pt 2):H1640-6. PubMed ID: 2556049 [Abstract] [Full Text] [Related]
20. Ferritin and superoxide-dependent lipid peroxidation. Thomas CE, Morehouse LA, Aust SD. J Biol Chem; 1985 Mar 25; 260(6):3275-80. PubMed ID: 2982854 [Abstract] [Full Text] [Related] Page: [Next] [New Search]