These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 21704677

  • 1. Midkine regulates amphetamine-induced astrocytosis in striatum but has no effects on amphetamine-induced striatal dopaminergic denervation and addictive effects: functional differences between pleiotrophin and midkine.
    Gramage E, Martín YB, Ramanah P, Pérez-García C, Herradón G.
    Neuroscience; 2011 Sep 08; 190():307-17. PubMed ID: 21704677
    [Abstract] [Full Text] [Related]

  • 2. The neurotrophic factor pleiotrophin modulates amphetamine-seeking behaviour and amphetamine-induced neurotoxic effects: evidence from pleiotrophin knockout mice.
    Gramage E, Putelli A, Polanco MJ, González-Martín C, Ezquerra L, Alguacil LF, Pérez-Pinera P, Deuel TF, Herradón G.
    Addict Biol; 2010 Oct 08; 15(4):403-12. PubMed ID: 20192945
    [Abstract] [Full Text] [Related]

  • 3. Pleiotrophin overexpression regulates amphetamine-induced reward and striatal dopaminergic denervation without changing the expression of dopamine D1 and D2 receptors: Implications for neuroinflammation.
    Vicente-Rodríguez M, Rojo Gonzalez L, Gramage E, Fernández-Calle R, Chen Y, Pérez-García C, Ferrer-Alcón M, Uribarri M, Bailey A, Herradón G.
    Eur Neuropsychopharmacol; 2016 Nov 08; 26(11):1794-1805. PubMed ID: 27642078
    [Abstract] [Full Text] [Related]

  • 4. Maintenance of amphetamine-induced place preference does not correlate with astrocytosis.
    Martín YB, Gramage E, Herradón G.
    Eur J Pharmacol; 2013 Jan 15; 699(1-3):258-63. PubMed ID: 23178526
    [Abstract] [Full Text] [Related]

  • 5. Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum.
    Gramage E, Rossi L, Granado N, Moratalla R, Herradón G.
    Neuroscience; 2010 Sep 29; 170(1):308-16. PubMed ID: 20620199
    [Abstract] [Full Text] [Related]

  • 6. Differential phosphoproteome of the striatum from pleiotrophin knockout and midkine knockout mice treated with amphetamine: correlations with amphetamine-induced neurotoxicity.
    Gramage E, Herradón G, Martín YB, Vicente-Rodríguez M, Rojo L, Gnekow H, Barbero A, Pérez-García C.
    Toxicology; 2013 Apr 05; 306():147-56. PubMed ID: 23459167
    [Abstract] [Full Text] [Related]

  • 7. Midkine Is a Novel Regulator of Amphetamine-Induced Striatal Gliosis and Cognitive Impairment: Evidence for a Stimulus-Dependent Regulation of Neuroinflammation by Midkine.
    Vicente-Rodríguez M, Fernández-Calle R, Gramage E, Pérez-García C, Ramos MP, Herradón G.
    Mediators Inflamm; 2016 Apr 05; 2016():9894504. PubMed ID: 28044069
    [Abstract] [Full Text] [Related]

  • 8. Regulation of extinction of cocaine-induced place preference by midkine is related to a differential phosphorylation of peroxiredoxin 6 in dorsal striatum.
    Gramage E, Pérez-García C, Vicente-Rodríguez M, Bollen S, Rojo L, Herradón G.
    Behav Brain Res; 2013 Sep 15; 253():223-31. PubMed ID: 23891929
    [Abstract] [Full Text] [Related]

  • 9. Endogenous pleiotrophin and midkine regulate LPS-induced glial responses.
    Fernández-Calle R, Vicente-Rodríguez M, Gramage E, de la Torre-Ortiz C, Pérez-García C, Ramos MP, Herradón G.
    Neurosci Lett; 2018 Jan 01; 662():213-218. PubMed ID: 29061398
    [Abstract] [Full Text] [Related]

  • 10. Phosphoproteomic analysis of the striatum from pleiotrophin knockout and midkine knockout mice treated with cocaine reveals regulation of oxidative stress-related proteins potentially underlying cocaine-induced neurotoxicity and neurodegeneration.
    Vicente-Rodríguez M, Gramage E, Herradón G, Pérez-García C.
    Toxicology; 2013 Dec 06; 314(1):166-73. PubMed ID: 24096156
    [Abstract] [Full Text] [Related]

  • 11. Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA.
    Granado N, Ares-Santos S, Oliva I, O'Shea E, Martin ED, Colado MI, Moratalla R.
    Neurobiol Dis; 2011 Jun 06; 42(3):391-403. PubMed ID: 21303698
    [Abstract] [Full Text] [Related]

  • 12. Differences in behavioural effects of amphetamine and dopamine-related gene expression in wild-type and homozygous CCK2 receptor deficient mice.
    Rünkorg K, Värv S, Matsui T, Kõks S, Vasar E.
    Neurosci Lett; 2006 Oct 02; 406(1-2):17-22. PubMed ID: 16916582
    [Abstract] [Full Text] [Related]

  • 13. Amphetamine induces apoptosis of medium spiny striatal projection neurons via the mitochondria-dependent pathway.
    Krasnova IN, Ladenheim B, Cadet JL.
    FASEB J; 2005 May 02; 19(7):851-3. PubMed ID: 15731293
    [Abstract] [Full Text] [Related]

  • 14. Pleiotrophin prevents cocaine-induced toxicity in vitro.
    Gramage E, Alguacil LF, Herradon G.
    Eur J Pharmacol; 2008 Oct 24; 595(1-3):35-8. PubMed ID: 18727926
    [Abstract] [Full Text] [Related]

  • 15. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration.
    García-Pérez D, Laorden ML, Milanés MV.
    Int J Neuropsychopharmacol; 2015 Jul 11; 19(1):. PubMed ID: 26164717
    [Abstract] [Full Text] [Related]

  • 16. The heparin binding growth factors midkine and pleiotrophin regulate the antinociceptive effects of morphine through α(2)-adrenergic independent mechanisms.
    Gramage E, Martín YB, Herradon G.
    Pharmacol Biochem Behav; 2012 May 11; 101(3):387-93. PubMed ID: 22342918
    [Abstract] [Full Text] [Related]

  • 17. Astrocyte delivery of glial cell line-derived neurotrophic factor in a mouse model of Parkinson's disease.
    Cunningham LA, Su C.
    Exp Neurol; 2002 Apr 11; 174(2):230-42. PubMed ID: 11922664
    [Abstract] [Full Text] [Related]

  • 18. Fetal striatum- and ventral mesencephalon-derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigro-striatal system in vivo.
    Moses D, Drago J, Teper Y, Gantois I, Finkelstein DI, Horne MK.
    Neuroscience; 2008 Jun 23; 154(2):606-20. PubMed ID: 18472226
    [Abstract] [Full Text] [Related]

  • 19. Behavioral and biochemical responses to d-amphetamine in MCH1 receptor knockout mice.
    Smith DG, Qi H, Svenningsson P, Wade M, Davis RJ, Gehlert DR, Nomikos GG.
    Synapse; 2008 Feb 23; 62(2):128-36. PubMed ID: 18000809
    [Abstract] [Full Text] [Related]

  • 20. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease.
    Yasuhara T, Shingo T, Kobayashi K, Takeuchi A, Yano A, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I.
    Eur J Neurosci; 2004 Mar 23; 19(6):1494-504. PubMed ID: 15066146
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.