These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
687 related items for PubMed ID: 21707646
21. The rate-limiting step for CO(2) assimilation at different temperatures is influenced by the leaf nitrogen content in several C(3) crop species. Yamori W, Nagai T, Makino A. Plant Cell Environ; 2011 May; 34(5):764-77. PubMed ID: 21241332 [Abstract] [Full Text] [Related]
22. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP. Plant Physiol; 2002 Dec; 130(4):1992-8. PubMed ID: 12481082 [Abstract] [Full Text] [Related]
23. Carbon isotope fractionation during photorespiration and carboxylation in Senecio. Lanigan GJ, Betson N, Griffiths H, Seibt U. Plant Physiol; 2008 Dec; 148(4):2013-20. PubMed ID: 18923019 [Abstract] [Full Text] [Related]
24. Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves. Ethier GJ, Livingston NJ, Harrison DL, Black TA, Moran JA. Plant Cell Environ; 2006 Dec; 29(12):2168-84. PubMed ID: 17081250 [Abstract] [Full Text] [Related]
25. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Tosens T, Niinemets U, Vislap V, Eichelmann H, Castro Díez P. Plant Cell Environ; 2012 May; 35(5):839-56. PubMed ID: 22070625 [Abstract] [Full Text] [Related]
26. The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. Priault P, Tcherkez G, Cornic G, De Paepe R, Naik R, Ghashghaie J, Streb P. J Exp Bot; 2006 May; 57(12):3195-207. PubMed ID: 16945981 [Abstract] [Full Text] [Related]
27. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Han Q. Tree Physiol; 2011 Sep; 31(9):976-84. PubMed ID: 21467050 [Abstract] [Full Text] [Related]
28. δ(13) C of leaf-respired CO(2) reflects intrinsic water-use efficiency in barley. Barbour MM, Tcherkez G, Bickford CP, Mauve C, Lamothe M, Sinton S, Brown H. Plant Cell Environ; 2011 May; 34(5):792-9. PubMed ID: 21276010 [Abstract] [Full Text] [Related]
29. Life history and resource acquisition: Photosynthetic traits in selected accessions of three perennial cereal species compared with annual wheat and rye. Jaikumar NS, Snapp SS, Sharkey TD. Am J Bot; 2013 Dec; 100(12):2468-77. PubMed ID: 24322893 [Abstract] [Full Text] [Related]
30. Mesophyll conductance response to short-term changes in pCO2 is related to leaf anatomy and biochemistry in diverse C4 grasses. Pathare VS, DiMario RJ, Koteyeva N, Cousins AB. New Phytol; 2022 Nov; 236(4):1281-1295. PubMed ID: 35959528 [Abstract] [Full Text] [Related]
31. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus. Dahal K, Kane K, Gadapati W, Webb E, Savitch LV, Singh J, Sharma P, Sarhan F, Longstaffe FJ, Grodzinski B, Hüner NP. Physiol Plant; 2012 Feb; 144(2):169-88. PubMed ID: 21883254 [Abstract] [Full Text] [Related]
33. Physiological and isotopic (delta(13)C and delta(18)O) responses of three tropical tree species to water and nutrient availability. Cernusak LA, Winter K, Turner BL. Plant Cell Environ; 2009 Oct; 32(10):1441-55. PubMed ID: 19558409 [Abstract] [Full Text] [Related]
34. Development of leaf photosynthetic parameters in Betula pendula Roth leaves: correlations with photosystem I density. Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Niinemets U, Laisk A. Plant Biol (Stuttg); 2004 May; 6(3):307-18. PubMed ID: 15143439 [Abstract] [Full Text] [Related]
35. Phylogeny and photosynthetic pathway distribution in Anticharis Endl. (Scrophulariaceae). Khoshravesh R, Hossein A, Sage TL, Nordenstam B, Sage RF. J Exp Bot; 2012 Sep; 63(15):5645-58. PubMed ID: 22945938 [Abstract] [Full Text] [Related]
37. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. Tazoe Y, Noguchi K, Terashima I. Plant Cell Environ; 2006 Apr; 29(4):691-700. PubMed ID: 17080618 [Abstract] [Full Text] [Related]
38. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C perennial grass species. Hu L, Wang Z, Huang B. Physiol Plant; 2010 May; 139(1):93-106. PubMed ID: 20070869 [Abstract] [Full Text] [Related]
39. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. Flexas J, Scoffoni C, Gago J, Sack L. J Exp Bot; 2013 Oct; 64(13):3965-81. PubMed ID: 24123453 [Abstract] [Full Text] [Related]
40. The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. Adachi S, Nakae T, Uchida M, Soda K, Takai T, Oi T, Yamamoto T, Ookawa T, Miyake H, Yano M, Hirasawa T. J Exp Bot; 2013 Feb; 64(4):1061-72. PubMed ID: 23349143 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]