These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


610 related items for PubMed ID: 21710974

  • 1. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.
    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y.
    Nano Lett; 2011 Jul 13; 11(7):3026-33. PubMed ID: 21710974
    [Abstract] [Full Text] [Related]

  • 2. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation.
    Wang G, Xiao X, Li W, Lin Z, Zhao Z, Chen C, Wang C, Li Y, Huang X, Miao L, Jiang C, Huang Y, Duan X.
    Nano Lett; 2015 Jul 08; 15(7):4692-8. PubMed ID: 26052643
    [Abstract] [Full Text] [Related]

  • 3. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion.
    Xu M, Da P, Wu H, Zhao D, Zheng G.
    Nano Lett; 2012 Mar 14; 12(3):1503-8. PubMed ID: 22364360
    [Abstract] [Full Text] [Related]

  • 4. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating.
    Hwang YJ, Hahn C, Liu B, Yang P.
    ACS Nano; 2012 Jun 26; 6(6):5060-9. PubMed ID: 22621345
    [Abstract] [Full Text] [Related]

  • 5. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.
    Su F, Wang T, Lv R, Zhang J, Zhang P, Lu J, Gong J.
    Nanoscale; 2013 Oct 07; 5(19):9001-9. PubMed ID: 23864159
    [Abstract] [Full Text] [Related]

  • 6. Titanium Dioxide Nanorods with Hydrogenated Oxygen Vacancies for Enhanced Solar Water Splitting.
    Sun B, Shi T, Tan X, Liu Z, Wu Y, Liao G.
    J Nanosci Nanotechnol; 2016 Jun 07; 16(6):6148-54. PubMed ID: 27427684
    [Abstract] [Full Text] [Related]

  • 7. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation.
    Cheng C, Karuturi SK, Liu L, Liu J, Li H, Su LT, Tok AI, Fan HJ.
    Small; 2012 Jan 09; 8(1):37-42. PubMed ID: 22009604
    [Abstract] [Full Text] [Related]

  • 8. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation.
    Wang G, Yang X, Qian F, Zhang JZ, Li Y.
    Nano Lett; 2010 Mar 10; 10(3):1088-92. PubMed ID: 20148567
    [Abstract] [Full Text] [Related]

  • 9. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting.
    Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y.
    Nano Lett; 2009 Jun 10; 9(6):2331-6. PubMed ID: 19449878
    [Abstract] [Full Text] [Related]

  • 10. Effective silicon nanowire arrays/WO3 core/shell photoelectrode for neutral pH water splitting.
    Chen Z, Ning M, Ma G, Meng Q, Zhang Y, Gao J, Jin M, Chen Z, Yuan M, Wang X, Liu JM, Zhou G.
    Nanotechnology; 2017 Jul 07; 28(27):275401. PubMed ID: 28531092
    [Abstract] [Full Text] [Related]

  • 11. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting.
    Gonçalves RH, Leite LD, Leite ER.
    ChemSusChem; 2012 Dec 07; 5(12):2341-7. PubMed ID: 23139181
    [Abstract] [Full Text] [Related]

  • 12. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y, Wang G, Wang H, Yang Y, Li Y.
    ChemSusChem; 2014 Mar 07; 7(3):848-53. PubMed ID: 24493003
    [Abstract] [Full Text] [Related]

  • 13. Branched TiO₂ nanorods for photoelectrochemical hydrogen production.
    Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X.
    Nano Lett; 2011 Nov 09; 11(11):4978-84. PubMed ID: 21999403
    [Abstract] [Full Text] [Related]

  • 14. Enhanced photoelectrochemical water splitting activity of carbon nanotubes@TiO2 nanoribbons in different electrolytes.
    Ahmed AM, Mohamed F, Ashraf AM, Shaban M, Aslam Parwaz Khan A, Asiri AM.
    Chemosphere; 2020 Jan 09; 238():124554. PubMed ID: 31421463
    [Abstract] [Full Text] [Related]

  • 15. Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy.
    Kamimura J, Bogdanoff P, Lähnemann J, Hauswald C, Geelhaar L, Fiechter S, Riechert H.
    J Am Chem Soc; 2013 Jul 17; 135(28):10242-5. PubMed ID: 23799779
    [Abstract] [Full Text] [Related]

  • 16. Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting.
    Allam NK, Poncheri AJ, El-Sayed MA.
    ACS Nano; 2011 Jun 28; 5(6):5056-66. PubMed ID: 21568298
    [Abstract] [Full Text] [Related]

  • 17. Reversible chemical tuning of charge carriers for enhanced photoelectrochemical conversion and probing of living cells.
    Wang Y, Tang J, Zhou T, Da P, Li J, Kong B, Yang Z, Zheng G.
    Small; 2014 Dec 10; 10(23):4967-74. PubMed ID: 25044916
    [Abstract] [Full Text] [Related]

  • 18. High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity.
    Hwang YJ, Boukai A, Yang P.
    Nano Lett; 2009 Jan 10; 9(1):410-5. PubMed ID: 19053790
    [Abstract] [Full Text] [Related]

  • 19. Controlled charge-dynamics in cobalt-doped TiO2 nanowire photoanodes for enhanced photoelectrochemical water splitting.
    Liu C, Wang F, Zhu S, Xu Y, Liang Q, Chen Z.
    J Colloid Interface Sci; 2018 Nov 15; 530():403-411. PubMed ID: 29982032
    [Abstract] [Full Text] [Related]

  • 20. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG, Hsu YK, Chen YC, Lee BW, Hwang JS, Chen LC, Chen KH.
    ChemSusChem; 2014 Sep 15; 7(9):2748-54. PubMed ID: 25044962
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.