These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 21711805

  • 1. Thermal conductivity and thermal boundary resistance of nanostructures.
    Termentzidis K, Parasuraman J, Da Cruz CA, Merabia S, Angelescu D, Marty F, Bourouina T, Kleber X, Chantrenne P, Basset P.
    Nanoscale Res Lett; 2011 Apr 04; 6(1):288. PubMed ID: 21711805
    [Abstract] [Full Text] [Related]

  • 2. Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces.
    Termentzidis K, Chantrenne P, Duquesne JY, Saci A.
    J Phys Condens Matter; 2010 Dec 01; 22(47):475001. PubMed ID: 21386620
    [Abstract] [Full Text] [Related]

  • 3. The thermal boundary resistance at semiconductor interfaces: a critical appraisal of the Onsager vs. Kapitza formalisms.
    Rurali R, Cartoixà X, Bedeaux D, Kjelstrup S, Colombo L.
    Phys Chem Chem Phys; 2018 Sep 12; 20(35):22623-22628. PubMed ID: 30131997
    [Abstract] [Full Text] [Related]

  • 4. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S, Kannam SK, Sathian SP, Todd BD.
    J Chem Phys; 2019 Nov 21; 151(19):194502. PubMed ID: 31757152
    [Abstract] [Full Text] [Related]

  • 5. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X, Jiang P, Ouyang Y, Lu S, Ren W, Chen J.
    Nanotechnology; 2021 Oct 29; 33(3):. PubMed ID: 34644695
    [Abstract] [Full Text] [Related]

  • 6. Electronic contribution in heat transfer at metal-semiconductor and metal silicide-semiconductor interfaces.
    Hamaoui G, Horny N, Hua Z, Zhu T, Robillard JF, Fleming A, Ban H, Chirtoc M.
    Sci Rep; 2018 Jul 27; 8(1):11352. PubMed ID: 30054516
    [Abstract] [Full Text] [Related]

  • 7. Prediction of Bi2Te3-Sb2Te3 Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations.
    Roy Chowdhury P, Shi J, Feng T, Ruan X.
    ACS Appl Mater Interfaces; 2021 Jan 27; 13(3):4636-4642. PubMed ID: 33433205
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling.
    Khalkhali M, Rajabpour A, Khoeini F.
    Sci Rep; 2019 Apr 05; 9(1):5684. PubMed ID: 30952974
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Molecular dynamics studies of material property effects on thermal boundary conductance.
    Zhou XW, Jones RE, Duda JC, Hopkins PE.
    Phys Chem Chem Phys; 2013 Jul 14; 15(26):11078-87. PubMed ID: 23715116
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Thermal Conductivity of Polyamide-6,6/Carbon Nanotube Composites: Effects of Tube Diameter and Polymer Linkage between Tubes.
    Keshtkar M, Mehdipour N, Eslami H.
    Polymers (Basel); 2019 Sep 07; 11(9):. PubMed ID: 31500250
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.