These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 21715775

  • 1. Hubbard-U band-structure methods.
    Albers RC, Christensen NE, Svane A.
    J Phys Condens Matter; 2009 Aug 26; 21(34):343201. PubMed ID: 21715775
    [Abstract] [Full Text] [Related]

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J.
    J Phys Condens Matter; 2008 Feb 13; 20(6):060301. PubMed ID: 21693862
    [Abstract] [Full Text] [Related]

  • 3. Accurate band gaps and dielectric properties from one-electron theories (abstract only).
    Kresse G, Shishkin M, Marsman M, Paier J.
    J Phys Condens Matter; 2008 Feb 13; 20(6):064203. PubMed ID: 21693865
    [Abstract] [Full Text] [Related]

  • 4. A self-consistent Hubbard U density-functional theory approach to the addition-elimination reactions of hydrocarbons on bare FeO+.
    Kulik HJ, Marzari N.
    J Chem Phys; 2008 Oct 07; 129(13):134314. PubMed ID: 19045097
    [Abstract] [Full Text] [Related]

  • 5. Structural and electronic properties of ZrX2)and HfX2 (X=S and Se) from first principles calculations.
    Jiang H.
    J Chem Phys; 2011 May 28; 134(20):204705. PubMed ID: 21639465
    [Abstract] [Full Text] [Related]

  • 6. Dynamical mean field theory-based electronic structure calculations for correlated materials.
    Biermann S.
    Top Curr Chem; 2014 May 28; 347():303-45. PubMed ID: 24842620
    [Abstract] [Full Text] [Related]

  • 7. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.
    Patrick CE, Giustino F.
    J Phys Condens Matter; 2012 May 23; 24(20):202201. PubMed ID: 22510587
    [Abstract] [Full Text] [Related]

  • 8. Non-standard Hubbard models in optical lattices: a review.
    Dutta O, Gajda M, Hauke P, Lewenstein M, Lühmann DS, Malomed BA, Sowiński T, Zakrzewski J.
    Rep Prog Phys; 2015 Jun 23; 78(6):066001. PubMed ID: 26023844
    [Abstract] [Full Text] [Related]

  • 9. Dynamical mean-field theory of nickelate superlattices.
    Han MJ, Wang X, Marianetti CA, Millis AJ.
    Phys Rev Lett; 2011 Nov 11; 107(20):206804. PubMed ID: 22181757
    [Abstract] [Full Text] [Related]

  • 10. What about U on surfaces? Extended Hubbard models for adatom systems from first principles.
    Hansmann P, Vaugier L, Jiang H, Biermann S.
    J Phys Condens Matter; 2013 Mar 06; 25(9):094005. PubMed ID: 23400014
    [Abstract] [Full Text] [Related]

  • 11. Communication: improving the density functional theory+U description of CeO2 by including the contribution of the O 2p electrons.
    Plata JJ, Márquez AM, Sanz JF.
    J Chem Phys; 2012 Jan 28; 136(4):041101. PubMed ID: 22299851
    [Abstract] [Full Text] [Related]

  • 12. Ab-initio simulations of materials using VASP: Density-functional theory and beyond.
    Hafner J.
    J Comput Chem; 2008 Oct 28; 29(13):2044-78. PubMed ID: 18623101
    [Abstract] [Full Text] [Related]

  • 13. DFT+U study of defects in bulk rutile TiO(2).
    Stausholm-Møller J, Kristoffersen HH, Hinnemann B, Madsen GK, Hammer B.
    J Chem Phys; 2010 Oct 14; 133(14):144708. PubMed ID: 20950031
    [Abstract] [Full Text] [Related]

  • 14. Experimental constraints on the theory of high-tc superconductivity.
    Anderson PW.
    Science; 1992 Jun 12; 256(5063):1526-31. PubMed ID: 17836318
    [Abstract] [Full Text] [Related]

  • 15. Valence-band electronic structure of iron phthalocyanine: an experimental and theoretical photoelectron spectroscopy study.
    Brena B, Puglia C, de Simone M, Coreno M, Tarafder K, Feyer V, Banerjee R, Göthelid E, Sanyal B, Oppeneer PM, Eriksson O.
    J Chem Phys; 2011 Feb 21; 134(7):074312. PubMed ID: 21341849
    [Abstract] [Full Text] [Related]

  • 16. Cationic and anionic vacancies on the NiO(100) surface: DFT+U and hybrid functional density functional theory calculations.
    Ferrari AM, Pisani C, Cinquini F, Giordano L, Pacchioni G.
    J Chem Phys; 2007 Nov 07; 127(17):174711. PubMed ID: 17994846
    [Abstract] [Full Text] [Related]

  • 17. Metal-insulator transitions in the half-filled ionic Hubbard model.
    Hoang AT.
    J Phys Condens Matter; 2010 Mar 10; 22(9):095602. PubMed ID: 21389421
    [Abstract] [Full Text] [Related]

  • 18. Field-dependent dynamics in the metallic regime of the half-filled Hubbard model.
    Parihari D, Vidhyadhiraja NS, Taraphder A.
    J Phys Condens Matter; 2011 Feb 09; 23(5):055602. PubMed ID: 21406912
    [Abstract] [Full Text] [Related]

  • 19. First-principles approach to the electronic structure of strongly correlated systems: combining the GW approximation and dynamical mean-field theory.
    Biermann S, Aryasetiawan F, Georges A.
    Phys Rev Lett; 2003 Feb 28; 90(8):086402. PubMed ID: 12633445
    [Abstract] [Full Text] [Related]

  • 20. Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: an efficient route to construct ab initio tight-binding parameters for eg perovskites.
    Franchini C, Kováčik R, Marsman M, Murthy SS, He J, Ederer C, Kresse G.
    J Phys Condens Matter; 2012 Jun 13; 24(23):235602. PubMed ID: 22581069
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.