These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


92 related items for PubMed ID: 2171935

  • 1. The role of myeloperoxidase in the oxidation of biologically active polyhydroxyphenols (substituted catechols).
    Metodiewa D, Dunford HB.
    Eur J Biochem; 1990 Oct 24; 193(2):445-8. PubMed ID: 2171935
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Evidence for a peroxidatic oxidation of norepinephrine, a catecholamine, by lactoperoxidase.
    Metodiewa D, Reszka K, Dunford HB.
    Biochem Biophys Res Commun; 1989 May 15; 160(3):1183-8. PubMed ID: 2543391
    [Abstract] [Full Text] [Related]

  • 5. Peroxidatic oxidation of catecholamines. A kinetic electron spin resonance investigation using the spin stabilization approach.
    Kalyanaraman B, Felix CC, Sealy RC.
    J Biol Chem; 1984 Jun 25; 259(12):7584-9. PubMed ID: 6330064
    [Abstract] [Full Text] [Related]

  • 6. Electron spin resonance--spin stabilization in enzymatic systems: detection of semiquinones produced during peroxidatic oxidation of catechols and catecholamines.
    Kalyanaraman B, Sealy RC.
    Biochem Biophys Res Commun; 1982 Jun 30; 106(4):1119-25. PubMed ID: 6288039
    [No Abstract] [Full Text] [Related]

  • 7. Semiquinone anion radicals from addition of amino acids, peptides, and proteins to quinones derived from oxidation of catechols and catecholamines. An ESR spin stabilization study.
    Kalyanaraman B, Premovic PI, Sealy RC.
    J Biol Chem; 1987 Aug 15; 262(23):11080-7. PubMed ID: 3038907
    [Abstract] [Full Text] [Related]

  • 8. Oxidation of 4-methylcatechol: implications for the oxidation of catecholamines.
    Li G, Zhang H, Sader F, Vadhavkar N, Njus D.
    Biochemistry; 2007 Jun 12; 46(23):6978-83. PubMed ID: 17503772
    [Abstract] [Full Text] [Related]

  • 9. Generation of nitro radical anions of some 5-nitrofurans, 2- and 5-nitroimidazoles by norepinephrine, dopamine, and serotonin. A possible mechanism for neurotoxicity caused by nitroheterocyclic drugs.
    Rao DN, Mason RP.
    J Biol Chem; 1987 Aug 25; 262(24):11731-6. PubMed ID: 2887562
    [Abstract] [Full Text] [Related]

  • 10. A dopaquinone model that mimics the water addition step of cofactor biogenesis in copper amine oxidases.
    Ling KQ, Sayre LM.
    J Am Chem Soc; 2005 Apr 06; 127(13):4777-84. PubMed ID: 15796543
    [Abstract] [Full Text] [Related]

  • 11. Phenylbutazone Oxidation via Cu,Zn-SOD Peroxidase Activity: An EPR Study.
    Aljuhani N, Whittal RM, Khan SR, Siraki AG.
    Chem Res Toxicol; 2015 Jul 20; 28(7):1476-83. PubMed ID: 26090772
    [Abstract] [Full Text] [Related]

  • 12. Evidence for one-electron oxidation of benzylpenicillin G by lactoperoxidase compounds I and II.
    Metodiewa D, Dunford HB.
    Biochem Biophys Res Commun; 1990 Jun 29; 169(3):1211-6. PubMed ID: 2163632
    [Abstract] [Full Text] [Related]

  • 13. Peroxidase-promoted oxidation and peroxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine. A new pathway for its metabolic degradation.
    Metodiewa D, Dunford HB.
    Mol Cell Biochem; 1992 May 13; 112(1):35-44. PubMed ID: 1513333
    [Abstract] [Full Text] [Related]

  • 14. Myeloperoxidase-oxidase oxidation of cysteamine.
    Svensson BE, Lindvall S.
    Biochem J; 1988 Jan 15; 249(2):521-30. PubMed ID: 2829860
    [Abstract] [Full Text] [Related]

  • 15. A long-lived o-semiquinone radical anion is formed from N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), an insect-derived antibacterial substance.
    Akiyama N, Nakanishi I, Ohkubo K, Satoh K, Tsuchiya K, Nishikawa T, Fukuzumi S, Ikota N, Ozawa T, Tsujimoto M, Natori S.
    J Biochem; 2007 Jul 15; 142(1):41-8. PubMed ID: 17684029
    [Abstract] [Full Text] [Related]

  • 16. Interference of carbidopa and other catechols with reactions catalyzed by peroxidases.
    Gąsowska-Bajger B, Nishigaya Y, Hirsz-Wiktorzak K, Rybczyńska A, Yamazaki T, Wojtasek H.
    Biochim Biophys Acta Gen Subj; 2018 Jul 15; 1862(7):1626-1634. PubMed ID: 29649511
    [Abstract] [Full Text] [Related]

  • 17. Oxidation of 4-tert-butylcatechol and dopamine by hydrogen peroxide catalysed by horseradish peroxidase.
    García-Moreno M, Moreno-Conesa M, Rodríguez-López JN, García-Cánovas F, Varón R.
    Biol Chem; 1999 Jun 15; 380(6):689-94. PubMed ID: 10430033
    [Abstract] [Full Text] [Related]

  • 18. Characterization of free radicals produced during oxidation of etoposide (VP-16) and its catechol and quinone derivatives. An ESR Study.
    Kalyanaraman B, Nemec J, Sinha BK.
    Biochemistry; 1989 May 30; 28(11):4839-46. PubMed ID: 2548593
    [Abstract] [Full Text] [Related]

  • 19. Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles.
    Liu CH, Yu CJ, Tseng WL.
    Anal Chim Acta; 2012 Oct 01; 745():143-8. PubMed ID: 22938619
    [Abstract] [Full Text] [Related]

  • 20. ESR studies on the oxidation of N,N-dimethyl-p-anisidine and its analogues catalyzed by myeloperoxidase.
    Sayo H, Hosokawa M, Lee E, Kariya K, Kohno M.
    Biochim Biophys Acta; 1986 Nov 21; 874(2):187-92. PubMed ID: 3022817
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.