These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


372 related items for PubMed ID: 2172229

  • 1. Proton-linked sugar transport systems in bacteria.
    Henderson PJ.
    J Bioenerg Biomembr; 1990 Aug; 22(4):525-69. PubMed ID: 2172229
    [Abstract] [Full Text] [Related]

  • 2. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes.
    Henderson PJ, Maiden MC.
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan 30; 326(1236):391-410. PubMed ID: 1970645
    [Abstract] [Full Text] [Related]

  • 3. Mammalian and bacterial sugar transport proteins are homologous.
    Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ.
    Nature; 1990 Jan 30; 325(6105):641-3. PubMed ID: 3543693
    [Abstract] [Full Text] [Related]

  • 4. Nucleotide sequence and transcriptional startpoint of the glpT gene of Escherichia coli: extensive sequence homology of the glycerol-3-phosphate transport protein with components of the hexose-6-phosphate transport system.
    Eiglmeier K, Boos W, Cole ST.
    Mol Microbiol; 1987 Nov 30; 1(3):251-8. PubMed ID: 3329281
    [Abstract] [Full Text] [Related]

  • 5. Mutants of the lactose carrier of Escherichia coli which show altered sugar recognition plus a severe defect in sugar accumulation.
    Varela MF, Wilson TH, Rodon-Rivera V, Shepherd S, Dehne TA, Rector AC.
    J Membr Biol; 2000 Apr 01; 174(3):199-205. PubMed ID: 10758173
    [Abstract] [Full Text] [Related]

  • 6. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems.
    Poolman B, Royer TJ, Mainzer SE, Schmidt BF.
    J Bacteriol; 1989 Jan 01; 171(1):244-53. PubMed ID: 2644191
    [Abstract] [Full Text] [Related]

  • 7. Sequence and structure of the yeast galactose transporter.
    Szkutnicka K, Tschopp JF, Andrews L, Cirillo VP.
    J Bacteriol; 1989 Aug 01; 171(8):4486-93. PubMed ID: 2666404
    [Abstract] [Full Text] [Related]

  • 8. Cation-sugar cotransport in the melibiose transport system of Escherichia coli.
    Tsuchiya T, Wilson TH.
    Membr Biochem; 1978 Aug 01; 2(1):63-79. PubMed ID: 45782
    [Abstract] [Full Text] [Related]

  • 9. Lactose carrier mutants of Escherichia coli with changes in sugar recognition (lactose versus melibiose).
    Varela MF, Brooker RJ, Wilson TH.
    J Bacteriol; 1997 Sep 01; 179(17):5570-3. PubMed ID: 9287014
    [Abstract] [Full Text] [Related]

  • 10. Forskolin specifically inhibits the bacterial galactose-H+ transport protein, GalP.
    Martin GE, Seamon KB, Brown FM, Shanahan MF, Roberts PE, Henderson PJ.
    J Biol Chem; 1994 Oct 07; 269(40):24870-7. PubMed ID: 7929167
    [Abstract] [Full Text] [Related]

  • 11. Altered sugar selection and transport conferred by spontaneous point and deletion mutations in the lactose carrier of Escherichia coli.
    Shinnick SG, Varela MF.
    J Membr Biol; 2002 Oct 01; 189(3):191-9. PubMed ID: 12395284
    [Abstract] [Full Text] [Related]

  • 12. Asparagine 394 in putative helix 11 of the galactose-H+ symport protein (GalP) from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar.
    McDonald TP, Walmsley AR, Henderson PJ.
    J Biol Chem; 1997 Jun 13; 272(24):15189-99. PubMed ID: 9182541
    [Abstract] [Full Text] [Related]

  • 13. Sugar recognition mutants of the melibiose carrier of Escherichia coli: possible structural information concerning the arrangement of membrane-bound helices and sugar/cation recognition site.
    Ding PZ, Botfield MC, Wilson TH.
    Biochim Biophys Acta; 2000 Dec 20; 1509(1-2):123-30. PubMed ID: 11118524
    [Abstract] [Full Text] [Related]

  • 14. Molecular mechanisms of sugar transport across mammalian and microbial cell membranes.
    Baldwin SA.
    Biotechnol Appl Biochem; 1990 Oct 20; 12(5):512-6. PubMed ID: 2288705
    [Abstract] [Full Text] [Related]

  • 15. The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12.
    Davis EO, Henderson PJ.
    J Biol Chem; 1987 Oct 15; 262(29):13928-32. PubMed ID: 2820984
    [Abstract] [Full Text] [Related]

  • 16. Cation specificity for sugar substrates of the melibiose carrier in Escherichia coli.
    Wilson DM, Wilson TH.
    Biochim Biophys Acta; 1987 Nov 13; 904(2):191-200. PubMed ID: 3311166
    [Abstract] [Full Text] [Related]

  • 17. Characteristics of the melibiose transporter and its primary structure in Enterobacter aerogenes.
    Okazaki N, Kuroda M, Shimamoto T, Shimamoto T, Tsuchiya T.
    Biochim Biophys Acta; 1997 May 22; 1326(1):83-91. PubMed ID: 9188803
    [Abstract] [Full Text] [Related]

  • 18. Isolation and sequencing of Escherichia coli gene proP reveals unusual structural features of the osmoregulatory proline/betaine transporter, ProP.
    Culham DE, Lasby B, Marangoni AG, Milner JL, Steer BA, van Nues RW, Wood JM.
    J Mol Biol; 1993 Jan 05; 229(1):268-76. PubMed ID: 8421314
    [Abstract] [Full Text] [Related]

  • 19. Cation-coupling in chimeric melibiose carriers derived from Escherichia coli and Klebsiella pneumoniae. The amino-terminal portion is crucial for Na+ recognition in melibiose transport.
    Hama H, Wilson TH.
    J Biol Chem; 1993 May 15; 268(14):10060-5. PubMed ID: 8387512
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.